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ABSTRACT OF THEDISSERTATION

Learning in Large–Scale Games
and Cooperative Control

by

Jason Robert Marden

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2007

Professor Jeff S. Shamma, Chair

Many engineering systems can be characterized as a large scale collection of inter-

acting subsystems each having access to local information, making local decisions,

having local interactions with neighbors, and seeking to optimize local objectives that

may well be in conflict with other subsystems. The analysis and design of such con-

trol systems falls under the broader framework of “complex and distributed systems”.

Other names include “multi-agent control,” “cooperative control,” “networked con-

trol,” as well as “team theory” or “swarming.” Regardless of the nomenclature, the

central challenge remains the same. That is to derive desirable collective behaviors

through the design of individual agent control algorithms. The potential benefits of

distributed decision architectures include the opportunity for real-time adaptation (or

self-organization) and robustness to dynamic uncertainties such as individual compo-

nent failures, non-stationary environments, and adversarial elements. These benefits

come with significant challenges, such as the complexity associated with a potentially

large number of interacting agents and the analytical difficulties of dealing with over-

lapping and partial information.
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This dissertation focuses on dealing with the distributed nature of decision mak-

ing and information processing through a non-cooperative game-theoretic formulation.

The interactions of a distributed/multi-agent control system are modeled as a non-

cooperative game among agents with the desired collective behavior being expressed

as a Nash equilibrium. In large scale multi-agent systems, agents are inherently lim-

ited in both their observational and computational capabilities. Therefore, this disser-

tation focuses on learning algorithms that can accommodate these limitations while

still guaranteeing convergence to a Nash equilibrium. Furthermore, in this dissertation

we illustrate a connection between the fields of game theory and cooperative control

and develop several suitable learning algorithms for a wide variety of cooperative con-

trol problems. This connection establishes a framework for designing and analyzing

multi-agent systems. We demonstrate the potential benefits of this framework on sev-

eral cooperative control problems including dynamic sensor coverage, consensus, and

distributing routing over a network, as well as the mathematical puzzle Sudoku.
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CHAPTER 1

Overview

Many engineering systems can be characterized as a large scale collection of inter-

acting subsystems each having access to local information, making local decisions,

having local interactions with neighbors, and seeking to optimize local objectives that

may well be in conflict with other subsystems. A representative sampling includes au-

tonomous vehicle teams, cooperative robotics, distributed computing, electronic com-

merce, wireless networks, sensor networks, traffic control, social networks, and com-

bat systems.

The analysis and design of such control systems falls under the broader framework

of “complex and distributed systems”. Other names include “multi-agent control,”

“cooperative control,” “networked control,” as well as “team theory” or “swarming.”

Regardless of the nomenclature, the central challenge remains the same. That is to

derive desirable collective behaviors through the design of individual agent control

algorithms. The potential benefits of distributed decision architectures include the

opportunity for real-time adaptation (or self-organization) and robustness to dynamic

uncertainties such as individual component failures, non-stationary environments, and

adversarial elements. These benefits come with significant challenges, such as the

complexity associated with a potentially large number of interacting agents and the

analytical difficulties of dealing with overlapping and partial information.

This dissertation focuses on dealing with the distributed nature of decision mak-

ing and information processing through a non-cooperative game-theoretic formulation.
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The interactions of a distributed/multi-agent control system are modeled as a non-

cooperative game among agents, with the desired collective behavior being expressed

as a Nash equilibrium. The emphasis is on simple learning algorithms that guarantee

convergence to a Nash equilibrium. Furthermore, the algorithms must have minimal

computational requirements to accommodate implementation in a wide variety of en-

gineered systems.

The need for simple learning algorithms can be motivated by looking at the prob-

lem of distributed routing over a network. In such a problem, there is a large number

of self interested players seeking to utilize a common network. Since the available re-

sources in the network are finite, players’ objectives are very much in conflict with one

another. The sheer quantity of available information makes centralized dissemination

or processing infeasible. When modeling the players’ interaction as a non-cooperative

game, the central issue involves how players make decisions. Or more precisely, what

information do players need to base their decisions on so as to guarantee some form of

a collective behavior? For example, does each player need to know the routing strate-

gies of all other players or would some form of aggregate information be acceptable?

Motivated by the inherent information restrictions in the problem of distributed

routing over networks, in Chapter 3 we consider multi-player repeated games involv-

ing a large number of players with large strategy spaces and enmeshed utility struc-

tures. In these “large-scale” games, players are inherently faced with limitations in

both their observational and computational capabilities. Accordingly, players in large-

scale games need to make their decisions using algorithms that accommodate limi-

tations in information gathering and processing. This disqualifies some of the well

known decision making models such as “Fictitious Play” (FP) [MS96a], in which each

player must monitor the individual actions of every other player and must optimize

over a high dimensional probability space.
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In this chapter, we analyze the properties of the learning algorithm Joint Strategy

Fictitious Play (JSFP), a close variant of FP. We demonstrate that JSFP alleviates both

the informational and computational burden of FP. Furthermore, we introduce JSFP

with inertia, i.e., a probabilistic reluctance to change strategies, and establish the con-

vergence to a pure Nash equilibrium in all generalized ordinal potential games in both

cases of averaged or exponentially discounted historical data. We illustrate JSFP with

inertia on the specific class of congestion games, a subset of generalized ordinal poten-

tial games. In particular, we illustrate the main results on a distributed traffic routing

problem.

In Chapter 4, we extend the results of JSFP by introducing an entire class of learn-

ing algorithms that can accommodate such observational and processing restrictions.

To that end, we build upon the idea of no-regret algorithms [HM00] to strengthen the

performance guarantees for implementation in multi-agent systems. No-regret algo-

rithms have been proposed to control a wide variety of multi-agent systems. The appeal

of no-regret algorithms is that they are easily implementable in large scale multi-agent

systems because players make decisions using only regret based information. Further-

more, there are existing results proving that the collective behavior will asymptotically

converge to a set of points of “no-regret” in any game. We illustrate, through a sim-

ple example, that no-regret points need not reflect desirable operating conditions for a

multi-agent system.

Multi-agent systems often exhibit an additional structure, i.e., being weakly acyclic,

that has not been exploited in the context of no-regret algorithms. In this chapter, we

introduce a modification of the traditional no-regret algorithms by (i) exponentially

discounting the memory and (ii) bringing in a notion of inertia in players’ decision

process. We show how these modifications can lead to an entire class of regret based

algorithms that providealmost sureconvergence to a pure Nash equilibrium in any
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weakly acyclic game.

The last, and most informationally restrictive, class of learning algorithms that

we will consider in this dissertation are payoff based algorithms. In such a scenario,

playersonly have access to (i) the action they played and (ii) the utility (possibly

noisy) they received. In a transportation network, this translates to drivers only having

information about the congestion actually experienced. Drivers are now unaware of

the traffic conditions on any alternative routes, which was previously a requirement

for the implementation of either JSFP or any regret based learning algorithm.

In Chapter 5, we focus on payoff based learning algorithms on the specific class of

weakly acyclic games. We introduce three different payoff based processes for increas-

ingly general scenarios and prove that after a sufficiently large number of stages, player

actions constitute a Nash equilibrium at any stage with arbitrarily high probability. The

first learning algorithm, calledSafe Experimentation, guarantees convergence to an op-

timal Nash equilibrium in any identical interest game. Such an equilibrium is called

optimal because it maximizes the payoff to all players. The second learning algorithm,

calledSimple Experimentation, guarantees convergence to a Nash equilibrium in any

weakly acyclic game. The third learning algorithm, calledSample Experimentation,

guarantees convergence to a Nash equilibrium in any weakly acyclic game even in the

presence of noisy utility functions.

The second topic of Chapter 5 is centered around the inefficiency of Nash equilib-

ria in routing problems. It is well known that a Nash equilibrium may not represent

a desirable operating point in a routing problem as it typically does not minimize the

total congestion on the network. Motivated by this inefficiency concern, we derive an

approach for modifying player utility functions through tolls and incentives in conges-

tion games, a special class of weakly acyclic games, to guarantee that a centralized

objective can be realized as a Nash equilibrium. We illustrate this equilibrium refine-
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ment method on a well studied distributed routing problem known as Braess’ Paradox.

In the following chapter, the focus shifts from the development of suitable learning

algorithms to understanding how one would design a multi-agent systems for a coop-

erative control problem. In particular, how would a global planner design each agent’s

local utility function such that a central objective could be realized as the outcome

of a repeated non-cooperative game? We seek to answer this question by highlight-

ing a connection between cooperative control problems and potential games. This

connection to potential games provides a structural framework with which to study

cooperative control problems and suggests an approach for utility design. However,

we would like to note that utility design for multi-agent systems is still very much an

open issue.

In Chapter 6, we present a view of cooperative control using the language of learn-

ing in games. We review the game theoretic concepts of potential games and weakly

acyclic games and demonstrate how several cooperative control problems such as con-

sensus, dynamic sensor coverage, and even the mathematical puzzle Sudoku can be

formulated in these settings. Motivated by this connection, we build upon game theo-

retic concepts to better accommodate a broader class of cooperative control problems.

In particular, we introduce two extensions of the learning algorithm Spatial Adaptive

Play. The first extension calledbinary Restricted Spatial Adaptive Playaccommodates

restricted action sets caused by limitations in agent capabilities. The second exten-

sion calledSpatial Adaptive Play with Group Based Decisionsaccommodates group

based collaborations in the decision making process. Furthermore, we also introduce

a new class of games, calledsometimes weakly acyclic games, for time-varying util-

ity functions and action sets, and provide distributed algorithms for convergence to an

equilibrium.

Lastly, we illustrate the potential benefits of this connection on several cooper-
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ative control problems. For the consensus problem, we demonstrate that consensus

can be reached even in an environment with non-convex obstructions. For the func-

tional consensus problem, we demonstrate an approach that will allow agents to reach

consensus on a specific consensus point which is some function of the initial condi-

tions. For the dynamic sensor coverage problem, we demonstrate how autonomous

sensors can distribute themselves using only local information in such a way as to

maximize the probability of detecting a particular event over a given mission space.

Lastly, we demonstrate how the popular mathematical game of Sudoku can be mod-

eled as a noncooperative game and solved using the learning algorithms discussed in

this dissertation.

1.1 Main Contributions of this Dissertation

To summarize, we will now restate the main contributions of this dissertation.

• We introduce the learning algorithm Joint Strategy Fictitious Play with inertia

and establish almost sure convergence to a pure Nash equilibrium in all gener-

alized ordinal potential games in both cases of averaged or exponentially dis-

counted historical data.

• We introduce a modification of the traditional no-regret algorithms by (i) ex-

ponentially discounting the memory and (ii) bringing in a notion of inertia in

players’ decision process. We show how these modifications can lead to an en-

tire class of regret based algorithms that provide almost sure convergence to a

pure Nash equilibrium in any weakly acyclic game.

• We introduce the payoff based algorithm Safe Experimentation and establish

almost sure convergence to an optimal Nash equilibrium in any identical interest

game.
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• We introduce the payoff based algorithm Simple Experimentation and establish

almost sure convergence to a pure Nash equilibrium in any weakly acyclic game.

• We introduce the payoff based algorithm Sample Experimentation and establish

almost sure convergence to a pure Nash equilibrium in any weakly acyclic game

even in the presence of noisy utility functions.

• We derive an approach for modifying player utility functions through tolls and

incentives in congestion games to guarantee that a centralized objective can be

realized as a Nash equilibrium.

• We establish a connection between potential games and cooperative control and

demonstrate the potential benefits of this connection on several cooperative con-

trol problems including dynamic sensor coverage, consensus, and distributing

routing over a network, as well as the mathematical puzzle Sudoku.

• We derive an equivalent definition for weakly acyclic games that explicitly high-

lights the connection between weakly acyclic and potential games.

• We introduce an extension of the learning algorithm Spatial Adaptive Play, called

binary Restricted Spatial Adaptive Play, to accommodate restricted action sets

caused by agent limitations. We establish probabilistic convergence to an action

profile that maximizes the potential function in any potential game.

• We introduce an extension of the learning algorithm Spatial Adaptive Play, called

Spatial Adaptive Play with Group Based Decisions, to accommodate group based

collaborations in the decision making process. We establish probabilistic conver-

gence to an action profile that maximizes the potential function in any potential

game.
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• We introduce a new class of games, called sometimes weakly acyclic games, for

time-varying utility functions and action sets, and provide distributed algorithms

for almost sure convergence to a universal Nash equilibrium.
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CHAPTER 2

Background

In this section, we will present a background of the game theoretic concepts used in this

dissertation. We refer the readers to [FT91, You98, You05] for a more comprehensive

review.

2.1 Finite Strategic-Form Games

We consider a finite strategic-form game withn-player setP := {P1, ...,Pn} where

each playerPi ∈ P has an action setAi and a utility functionUi : A → R where

A = A1 × · · · × An. We will refer to a finite strategic-form game as just a game and

we will sometimes use a single symbol, e.g.,G, to represent the entire game, i.e., the

player set,P, action sets,Ai, and utility functionsUi.

An example of a two player game is illustrated in matrix form in Figure 2.1. In this

game, each player has two actions or strategies and a utility function represented by

the payoff matrix. Once each player has selected his action, both players receive their

associated reward. For example, if player 1 chooseTop and player 2 chooseDown,

player 1 would receive a reward of 2 while player 2 would receive a reward of 1.

For an action profilea = (a1, a2, ..., an) ∈ A, let a−i denote the profile of player

actionsother thanplayerPi, i.e.,

a−i = {a1, . . . , ai−1, ai+1, . . . , an} .
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0,0

Payoff Matrix

Player 1
chooses Top

Player 1
chooses Bottom

Player 2
chooses Up

Player 2
chooses Down

1,2

2,1

0,0

Figure 2.1: Example of a Finite Strategic-Form Game

With this notation, we will sometimes write a profilea of actions as(ai, a−i). Sim-

ilarly, we may writeUi(a) asUi(ai, a−i). Furthermore, letA−i =
∏
Pj 6=Pi

Ai de-

note the set of possible collective actions of all players other than playerPi and let

P−i = {P1, . . . ,Pi−1,Pi+1, . . . ,Pn} denote the set of players other than playerPi.

2.2 Forms of Equilibrium

In this section we will introduce three forms of equilibrium that will be discussed in

this dissertation: Nash equilibrium, correlated equilibrium (CE), and coarse correlated

equilibrium (CCE).

2.2.1 Nash Equilibrium

The most well known form of an equilibrium is the Nash equilibrium.

Definition 2.2.1 (Pure Nash Equilibrium). An action profilea∗ ∈ A is called a pure

Nash equilibrium if for all playersPi ∈ P,

Ui(a
∗
i , a

∗
−i) = max

ai∈Ai

Ui(ai, a
∗
−i). (2.1)
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Furthermore, if the above condition is satisfied with a unique maximizer for every

playerPi ∈ P, thena∗ is called a strict Nash equilibrium.

A Nash equilibrium represents a scenario for which no player has an incentive to

unilaterally deviate.

The concept of Nash equilibrium also extends to mixed strategy spaces. Let the

strategyof playerPi be defined aspi ∈ ∆(Ai), where∆(Ai) is the set of probability

distributions over the finite set of actionsAi. We will adopt the convention thatpai
i

represents the probability that playerPi will select actionai and
∑

ai∈Ai
pai

i = 1. If all

playersPi ∈ P play independently according to their personal strategypi ∈ ∆(Ai),

then the expected utility of playerPi for strategypi is defined as

Ui(pi, p−i) =
∑
a∈A

Ui(a)p
a1
1 p

a2
2 . . . pan

n ,

wherep−i = {p1, . . . , pi−1, pi+1, . . . , pn} denotes the collection of strategies of players

other than playerPi.

Definition 2.2.2 (Nash Equilibrium). A strategy profilep∗ = {p∗1, . . . , p∗n} is called a

Nash equilibrium if for all playersPi ∈ P,

Ui(p
∗
i , p

∗
−i) = max

pi∈∆(Ai)
Ui(pi, p

∗
−i). (2.2)

2.2.2 Correlated Equilibrium

In this section we will define a broader class of equilibria for which there may be corre-

lations among the players. To that end, letz ∈ ∆(A) denote a probability distribution

over the set of joint actionsA. We will adopt the convention thatza is the probability

of the joint actiona and
∑

a∈A z
a = 1. In the special case that all playersPi ∈ P play

independently according to their personal strategypi ∈ ∆(Ai), as was the case in the
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definition of the Nash equilibrium, then

za = pa1
1 p

a2
2 . . . pan

n ,

wherea = (a1, a2, . . . , an).

Definition 2.2.3 (Correlated Equilibrium). The probability distributionz is a corre-

lated equilibrium if for all playersPi ∈ P and for all actionsai, a
′
i ∈ Ai,∑

a−i∈A−i

Ui(ai, a−i)z
(ai,a−i) ≥

∑
a−i∈A−i

Ui(a
′
i, a−i)z

(ai,a−i). (2.3)

To motivate this definition consider the following scenario. First, a joint action

a ∈ A is randomly drawn according to the probability distributionz ∈ ∆(A). Next,

each player is informed of only his particular actionai, but not the actions of the other

players. Finally, each player is given the opportunity to change his action. The condi-

tion for correlated equilibrium in (2.3) states that each playerPi’s conditional expected

payoff for actionai is at least as good as his conditional expected payoff for any other

actiona′i 6= ai. In other words, a probability distributionz is a correlated equilibrium

if and only if no player would seek to change their action from the outcome, randomly

drawn according toz, even after his part has been revealed.

Notice that all Nash equilibria are in fact correlated equilibria.

2.2.3 Coarse Correlated Equilibrium

We will now relax the requirements on correlated equilibrium. Before doing so, we

will discuss marginal distributions. Given the joint distributionz ∈ ∆(A), the marginal

distribution of all players other than playerPi is

z
a−i

−i =
∑

a′i∈Ai

z(a′i,a−i).

Note thatz−i is a well defined probability distribution in∆(A−i).
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Definition 2.2.4 (Coarse Correlated Equilibrium). The probability distributionz is

a coarse correlated equilibrium if for all playersPi ∈ P and for all actionsa′i ∈ Ai,∑
a∈A

Ui(a)z
a ≥

∑
a−i∈A−i

Ui(a
′
i, a−i)z

a−i

−i . (2.4)

To motivate this definition, consider the following scenario which differs slightly

from the correlated equilibrium scenario. Before the joint actiona is drawn, each

playerPi is given the opportunity to opt out, in which case the player can select any

actionai ∈ Ai that he wishes. If the player does not opt out, he commits himself to

playing his part of the action-tuplea randomly drawn according to the distributionz.

In words, a distributionz is a coarse correlated equilibrium if under this scenario no

player would choose to opt out given that all other players opt to stay in.

If the joint distributionz is a correlated equilibrium, then we know that for any

actiona′i ∈ Ai∑
ai∈Ai

∑
a−i∈A−i

Ui(ai, a−i)z
(ai,a−i) ≥

∑
ai∈Ai

∑
a−i∈A−i

Ui(a
′
i, a−i)z

(ai,a−i),

=
∑

a−i∈A−i

Ui(a
′
i, a−i)

∑
ai∈Ai

z(ai,a−i),

=
∑

a−i∈A−i

Ui(a
′
i, a−i)z

a−i

−i .

This implies that for any actiona′i ∈ Ai∑
a∈A

Ui(a)z
a ≥

∑
a−i∈A−i

Ui(a
′
i, a−i)z

a−i

−i .

Therefore, all correlated equilibria, and hence Nash equilibria, are in fact coarse corre-

lated equilibria as illustrated in Figure 2.2. Under the condition that all players select

their action independently, as was the case in the definition of the Nash equilibrium,

then the definition of correlated, coarse correlated, and Nash equilibria are all equiva-

lent.
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Coarse
CorrelatedCorrelatedNash

Figure 2.2: Relationship Between Nash, Correlated, and Coarse Correlated Equilibria.

2.2.4 Equilibrium Comparison

The main difference between Nash, correlated, and coarse correlated equilibria is

whether a player is committed conditionally or unconditionally to a random draw of

a given joint distributionz ∈ ∆(A). Table 2.1, taken from [You05], summarizes the

main differences between the three forms of equilibria.

Conditional Participation Unconditional Participation

Independent Probabilities Nash Nash

Correlated Probabilities Correlated Coarse Correlated

Table 2.1: Relationship Between Nash, Correlated, and Coarse Correlated Equilibria.

We will now present a simple two player example, from [You05], to highlight

the differences between the set of Nash equilibria and the set of correlated or coarse

correlated equilibria. Note that the set of correlated equilibria and the set of coarse

correlated equilibria are equivalent in two player games.

Consider the following two player game with payoff matrix as illustrated if Fig-

ure 2.3. For any joint action, the first entry is the payoff for player 1 and the second

entry is the payoff for player 2. For example,U1(L,L) = 1 andU2(L,L) = 1.

Let z = {zLL, zLR, zRL, zLL} be a probability distribution over the joint action space

A = {LL,LR,RL,RR}.
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1,1

1,1

0,0

0,0

zLLL

R

L R L R

L

R

Payoff Matrix Joint Distribution

P1
P2

P1
P2

zRL

zLR

zRR

Figure 2.3: Example of an Identical Interest Game

In this example, there are two strict Nash equilibria,(L,L) and(R,R). Further-

more, there is one mixed Nash equilibrium,pL
1 = pL

2 = 1/2 andpR
1 = pR

2 = 1/2. A

joint distributionz is a correlated equilibrium if and only if the off-diagonal probabil-

ities do not exceed the diagonal probabilities, i.e.,

max{zLR, zRL} ≤ min{zLL, zRR}.

Therefore, the set of correlated equilibria is significantly larger than the set of Nash

equilibria.

2.3 Classes of Games

In this dissertation we will consider four classes of games: identical interest games,

potential games, congestion games, and weakly acyclic games. Each class of games

imposes a restriction on the admissible utility functions.
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2.3.1 Identical Interest Games

The most restrictive class of games that we will review in this dissertation is identical

interest games. In such a game, the players’ utility functions{Ui}n
i=1 are chosen to be

the same. That is, for some functionφ : A → R,

Ui(a) = φ(a),

for everyPi ∈ P and for everya ∈ A. It is easy to verify that all identical inter-

est games have at least one pure Nash equilibrium, namely any action profilea that

maximizesφ(a). An example of an identical interest game is illustrated in Figure 2.3.

2.3.2 Potential Games

A significant generalization of an identical interest game is a potential game. In a

potential game, the change in a player’s utility that results from a unilateral change

in strategy equals the change in the global utility. Specifically, there is a function

φ : A → R such that for every playerPi ∈ P, for everya−i ∈ A−i, and for every

a′i, a
′′
i ∈ Ai,

Ui(a
′
i, a−i)− Ui(a

′′
i , a−i) = φ(a′i, a−i)− φ(a′′i , a−i). (2.5)

When this condition is satisfied, the game is called a potential game with the potential

functionφ. It is easy to see that in potential games, any action profile maximizing the

potential function is a pure Nash equilibrium, hence every potential game possesses at

least one such equilibrium.

An example of a two player potential game with associated potential function is

illustrated if Figure 2.4.

We will also consider a more general class of potential games known asgeneralized

ordinal potential games. In generalized ordinal potential games there is a function
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2,0

0,1

3,2

0,0

2

10

4L

R

L R L R

L

R

Payoff Matrix Potential

P1
P2

P1
P2

Figure 2.4: Example of a Potential Game with Potential Function

φ : A → R such that for every playerPi ∈ P, for everya−i ∈ A−i, and for every

a′i, a
′′
i ∈ Ai,

Ui(a
′
i, a−i)− Ui(a

′′
i , a−i) > 0 ⇒ φ(a′i, a−i)− φ(a′′i , a−i) > 0.

2.3.3 Congestion Games

Congestion games are a specific class of games in which player utility functions have

a special structure.

In order to define a congestion game, we must specify the action set,Ai, and

utility function, Ui(·), of each player. Towards this end, letR denote a finite set of

“resources”. For each resourcer ∈ R, there is an associated “congestion function”

cr : {0, 1, 2, ...} → R

that reflects the cost of using the resource as a function of the number of players using

that resource.

The action set,Ai, of each player,Pi, is defined as the set of resources available to
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playerPi, i.e.,

Ai ⊂ 2R,

where2R denotes the set of subsets ofR. Accordingly, an action,ai ∈ Ai, reflects a

selection of (multiple) resources,ai ⊂ R. A player is “using” resourcer if r ∈ ai. For

an action profilea ∈ A, let σr(a) denote the total number of players using resource

r, i.e., |{i : r ∈ ai}|. In a congestion game, the utility of playerPi using resources

indicated byai depends only on the total number of players using the same resources.

More precisely, the utility of playerPi is defined as

Ui(a) =
∑
r∈ai

cr(σr(a)). (2.6)

Any congestion game with utility functions as in (2.6) is a potential game [Ros73] with

potential function

φ(a) =
∑
r∈R

σr(a)∑
k=1

cr(k). (2.7)

In fact, every congestion game is a potential game and every finite potential game is

isomorphic to a congestion game [MS96b].

2.3.4 Weakly Acyclic Games

Consider any finite gameG with a setA of action profiles. Abetter reply pathis a

sequence of action profilesa1, a2, ..., aL such that, for every1 ≤ ` ≤ L − 1, there

is exactly one playerPi` such that i)a`
i`
6= a`+1

i`
, ii) a`

−i`
= a`+1

−i`
, and iii) Ui`(a

`) <

Ui`(a
`+1). In other words, one player moves at a time, and each time a player moves

he increases his own utility.

Suppose now thatG is a potential game with potential functionφ. Starting from

an arbitrary action profilea ∈ A, construct a better reply patha = a1, a2, ..., aL until

it can no longer be extended. Note first that such a path cannot cycle back on itself,
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becauseφ is strictly increasing along the path. SinceA is finite, the path cannot be

extended indefinitely. Hence, the last element in a maximal better reply path from any

joint action,a, must be a Nash equilibrium ofG.

This idea may be generalized as follows. The gameG is weakly acyclicif for any

a ∈ A, there exists a better reply path starting ata and ending at some pure Nash

equilibrium ofG [You98, You05]. Potential games are special cases of weakly acyclic

games.

An example of a two player weakly acyclic game is illustrated in Figure 2.5.

Not Weakly Acyclic
Under Better Replies

Weakly Acyclic
Under Better Replies

2,1

-1,2

0,0

1,2

2,1

0,0

0,0

0,0

1,1

2,1

-1,2

0,0

1,2

2,1

0,0

0,0

0,0

1,1

2,1

1,2

0,0

1,2

2,1

0,0

0,0

0,0

1,1

2,1

1,2

0,0

1,2

2,1

0,0

0,0

0,0

1,1

Figure 2.5: Example of a Weakly Acyclic Game

2.4 Repeated Games

In a repeated game, at each timet ∈ {0, 1, 2, . . . }, each playerPi ∈ P simultane-

ously chooses an actionai(t) ∈ Ai and receives the utilityUi(a(t)) wherea(t) :=

(a1(t), . . . , an(t)). Each playerPi ∈ P chooses his actionai(t) at timet simultane-

ously according to a probability distributionpi(t), which we will refer to as thestrategy
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of playerPi at timet. A player’s strategy at timet can rely only on observations from

times{0, 1, 2, ..., t− 1}. Different learning algorithms are specified by both the as-

sumptions on available information and the mechanism by which the strategies are

updated as information is gathered.

We will review three main classes of learning algorithms in this dissertation: full

information, virtual payoff based, and payoff based. For a detailed review of learning

in games we direct the reader to [FL98, You98, You05, HS98, Wei95, Sam97].

2.4.1 Full Information Learning Algorithms

The most informationally sophisticated class of learning algorithms is full information.

In full information learning algorithms, each player knows the functional form of his

utility function and is capable of observing the actions of all other players at every time

step. The strategy adjustment mechanism of playerPi can be written in the general

form

pi(t) = Fi

(
a(0), ..., a(t− 1);Ui

)
.

In this setting, players may develop probabilistic models for the actions of other

players using past observations. Based off these models, players may seek to maximize

some form of an expected utility. An example of a learning algorithm, or strategy

adjustment mechanism, of this form is the well known fictitious play [MS96a]. We

will review fictitious play in Section 3.2.1.

2.4.2 Virtual Payoff Based Learning Algorithms

We will now relax the requirements of full information learning algorithms. In virtual

payoff based algorithms, players are now unaware of the structural form of their utility

function. Furthermore, players also are not capable of observing the actions of all
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players. However, players are endowed with the ability to assess the utility that they

would have received for alternative action choices. For example, suppose that the

action played at timet is a(t). In virtual payoff based dynamics, each playerPi with

action setAi = {a1
i , ..., a

|Ai|
i } has access to the following information:

a(t) ⇒


Ui(a

1
i , a−i(t))

...

Ui(a
|Ai|
i , a−i(t))

 ,
where|Ai| denotes the cardinality of the action setAi.

The strategy adjustment mechanism of playerPi can be written in the general form

pi(t) = Fi

(
{Ui(ai, a−i(0))}ai∈Ai

, . . . , {Ui(ai, a−i(t− 1))}ai∈Ai

)
.

An example of a learning algorithm, or strategy adjustment mechanism, of this form

is the well known regret matching [HM00]. We will review regret matching in Sec-

tion 4.2. Virtual payoff based learning algorithms will be the focus of Chapters 3 and

4.

2.4.3 Payoff Based Learning Algorithms

Payoff based learning algorithms are the most informationally restrictive class of learn-

ing algorithms. Now, playersonlyhave access to (i) the action they played and (ii) the

utility (possibly noisy) they received. In this setting, the strategy adjustment mecha-

nism of playerPi takes on the form

pi(t) = Fi

(
{ai(0), Ui(a(0))}, ..., {ai(t− 1), Ui(a(t− 1))}

)
. (2.8)

We will discuss payoff based learning algorithms extensively in Chapter 5.
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CHAPTER 3

Joint Strategy Fictitious Play with Inertia for Potential

Games

In this chapter we consider multi-player repeated games involving a large number of

players with large strategy spaces and enmeshed utility structures. In these “large-

scale” games, players are inherently faced with limitations in both their observational

and computational capabilities. Accordingly, players in large-scale games need to

make their decisions using algorithms that accommodate limitations in information

gathering and processing. This disqualifies some of the well known decision making

models such as “Fictitious Play” (FP), in which each player must monitor the individ-

ual actions of every other player and must optimize over a high dimensional probability

space. We will show that Joint Strategy Fictitious Play (JSFP), a close variant of FP,

alleviates both the informational and computational burden of FP. Furthermore, we

introduce JSFP with inertia, i.e., a probabilistic reluctance to change strategies, and

establish the convergence to a pure Nash equilibrium in all generalized ordinal po-

tential games in both cases of averaged or exponentially discounted historical data.

We illustrate JSFP with inertia on the specific class of congestion games, a subset of

generalized ordinal potential games. In particular, we illustrate the main results on a

distributed traffic routing problem and derive tolling procedures that can lead to opti-

mized total traffic congestion.
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3.1 Introduction

We consider “large-scale” repeated games involving a large number of players, each of

whom selects a strategy from a possibly large strategy set. A player’s reward, or utility,

depends on the actions taken by all players. The game is repeated over multiple stages,

and this allows players to adapt their strategies in response to the available information

gathered over prior stages. This setup falls under the general subject of “learning

in games” [FL98, You05], and there are a variety of algorithms and accompanying

analysis that examine the long term behavior of these algorithms.

In large-scale games players are inherently faced with limitations in both their

observational and computational capabilities. Accordingly, players in such large-scale

games need to make their decisions using algorithms that accommodate limitations in

information gathering and processing. This limits the feasibility of different learning

algorithms. For example, the well-studied algorithm “Fictitious Play” (FP) requires

individual players to individually monitor the actions of other players and to optimize

their strategies according to a probability distribution function over the joint actions of

other players. Clearly, such information gathering and processing is not feasible in a

large-scale game.

The main objective of this chapter is to study a variant of FP called Joint Strategy

Fictitious Play (JSFP) [FL98, FK93, MS97]. We will argue that JSFP is a plausible

decision making model for certain large-scale games. We will introduce a modification

of JSFP to include inertia, in which there is a probabilistic reluctance of any player to

change strategies. We will establish that JSFP with inertia converges to a pure Nash

equilibrium for a class of games known as generalized ordinal potential games, which

includes so-called congestion games as a special case [Ros73].

Our motivating example for a large-scale congestion game is distributed traffic
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routing [BL85], in which a large number of vehicles make daily routing decisions to

optimize their own objectives in response to their own observations. In this setting,

observing and responding to the individual actions of all vehicles on a daily basis

would be a formidable task for any individual driver. A more realistic measurement

on the information tracked and processed by an individual driver is the daily aggregate

congestion on the roads that are of interest to that driver [BPK91]. It turns out that

JSFP accommodates such information aggregation.

We will now review some of the well known decision making models and discuss

their limitations in large-scale games. See the monographs [FL98, You98, You05,

HS98, Wei95] and survey article [Har05] for a more comprehensive review.

The well known FP algorithm requires that each player views all other players

as independent decision makers [FL98]. In the FP framework, each player observes

the decisions made by all other players and computes the empirical frequencies (i.e.

running averages) of these observed decisions. Then, each player best responds to the

empirical frequencies of other players’ decisions by first computing the expected utility

for each strategy choice under the assumption that the other players will independently

make their decisions probabilistically according to the observed empirical frequencies.

FP is known to be convergent to a Nash equilibrium in potential games, but need not

converge for other classes of games. General convergence issues are discussed in

[HM03b, SA05, AS04].

The paper [LES05] introduces a version of FP, called “sampled FP”, that seeks to

avoid computing an expected utility based on the empirical frequencies, because for

large scale games, this expected utility computation can be prohibitively demanding.

In sampled FP, each player selects samples from the strategy space of every other

player according to the empirical frequencies of that player’s past decisions. A player

then computes an average utility for each strategy choice based off of these samples.
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Each player still has to observe the decisions made by all other players to compute

the empirical frequencies of these observed decisions. Sampled FP is proved to be

convergent in identical interest games, but the number of samples needed to guarantee

convergence grows unboundedly.

There are convergent learning algorithms for a large class of coordination games

called “weakly acyclic” games [You98]. In adaptive play [You93] players have finite

recall and respond to the recent history of other players. Adaptive play requires each

player to track the individual behavior of all other players for recall window lengths

greater than one. Thus, as the size of player memory grows, adaptive play suffers from

the same computational setback as FP.

It turns out that there is a strong similarity between the JSFP discussed herein and

the regret matching algorithm [HM00]. A player’s regret for a particular choice is

defined as the difference between 1) the utility that would have been received if that

particular choice was played for all the previous stages and 2) the average utility ac-

tually received in the previous stages. A player using the regret matching algorithm

updates a regret vector for each possible choice, and selects actions according to a

probability proportional to positive regret. In JSFP, a player chooses an action by

myopically maximizing the anticipated utility based on past observations, which is ef-

fectively equivalent to regret modulo a bias term. A current open question is whether

player choices would converge in coordination-type games when all players use the

regret matching algorithm (except for the special case of two-player games [HM03a]).

There are finite memory versions of the regret matching algorithm and various gen-

eralizations [You05], such as playing best or better responses to regret over the last

m stages, that are proven to be convergent in weakly acyclic games when players use

some sort of inertia. These finite memory algorithms do not require each player to

track the behavior of other players individually. Rather, each player needs to remem-
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ber the utilities actually received and the utilities that could have been received in the

lastm stages. In contrast, a player using JSFP best responds according to accumu-

lated experience over the entire history by using a simple recursion which can also

incorporate exponential discounting of the historical data.

There are also payoff based dynamics, where each player observes only the actual

utilities received and uses a Reinforcement Learning (RL) algorithm [SB98, BT96]

to make future choices. Convergence of player choices when all players use an RL-

like algorithm is proved for identical interest games [LC03, LC05b, LC05a] assuming

that learning takes place at multiple time scales. Finally, the payoff based dynamics

with finite-memory presented in [HS04] leads to a Pareto-optimal outcome in generic

common interest games.

Regarding the distributed routing setting of Section 3.4, there are papers that ana-

lyze different routing strategies in congestion games with “infinitesimal” players, i.e.,

a continuum of players as opposed to a large, but finite, number of players. Refer-

ences [FV04, FV05, FRV06] analyze the convergence properties of a class of routing

strategies that is a variation of the replicator dynamics in congestion games, also re-

ferred to as symmetric games, under a variety of settings. Reference [BEL06] analyzes

the convergence properties of no-regret algorithms in such congestion games and also

considers congestion games with discrete players, as considered in this paper, but the

results hold only for a highly structured symmetric game.

The remainder of this chapter is organized as follows. Section 3.2, sets up JSFP

and goes on to establish convergence to a pure Nash equilibrium for JSFP with iner-

tia in all generalized ordinal potential games. Section 3.3 presents a fading memory

variant of JSFP, and likewise establishes convergence to a pure Nash equilibrium. Sec-

tion 3.4 presents an illustrative example for traffic congestion games. Section 3.4 goes

on to illustrate the use of tolls to achieve a socially optimal equilibrium and derives
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conditions for this equilibrium to be unique.

3.2 Joint Strategy Fictitious Play with Inertia

Consider a finite game withn-player setP := {P1, ...,Pn} where each playerPi ∈ P

has an action setAi and a utility functionUi : A → R whereA = A1 × ...×An.

In a repeated gameas described in Section 2.4, at every staget ∈ {0, 1, 2, ...}, each

player,Pi, simultaneously selects an actionai(t) ∈ Ai. This selection is a function of

the information available to playerPi up to staget. Both the action selection function

and the available information depend on the underlying learning process.

3.2.1 Fictitious Play

We start with the well known Fictitious Play (FP) process [FL98]. Fictitious Play is an

example of a full information learning algorithm.

Define theempirical frequency, qāi
i (t), as the percentage of stages at which player

Pi has chosen the action̄ai ∈ Ai up to timet− 1, i.e.,

qāi
i (t) :=

1

t

t−1∑
τ=0

I{ai(τ) = āi},

whereai(k) ∈ Ai is playerPi’s action at timek andI{·} is the indicator function.

Now define the empirical frequency vector for playerPi as

qi(t) :=


qā1
i

...

q
ā|Ai|
i

 ,

where|Ai| is the cardinality of the action setAi.

The action of playerPi at timet is based on the (incorrect) presumption that other

27



players are playingrandomlyandindependentlyaccording to their empirical frequen-

cies. Under this presumption, the expected utility for the actionāi ∈ Ai is

Ui(āi, q−i(t)) :=
∑

a−i∈A−i

Ui(āi, a−i)
∏

aj∈a−i

q
aj

j (t), (3.1)

whereq−i(t) := {q1(t), ..., qi−1(t), qi+1(t), ..., qn(t)} andA−i := ×j 6=iAj. In the FP

process, playerPi uses this expected utility by selecting an action at timet from the

set

BRi(q−i(t)) := {ãi ∈ Ai : Ui(ãi, q−i(t)) = max
ai∈Ai

Ui(ai, q−i(t))}.

The setBRi(q−i(t)) is called playerPi’s best response toq−i(t). In case of a non-

unique best response, playerPi makes a random selection fromBRi(q−i(t)).

It is known that the empirical frequencies generated by FP converge to a Nash

equilibrium in potential games [MS96b].

Note that FP as described above requires each player to observe the actions made

by every other individual player. Moreover, choosing an action based on the predic-

tions (3.1) amounts to enumerating all possible joint actions in×jAj at every stage for

each player. Hence, FP is computationally prohibitive as a decision making model in

large-scale games.

3.2.2 Setup: Joint Strategy Fictitious Play

In JSFP, each player tracks the empirical frequencies of thejoint actionsof all other

players. In contrast to FP, the action of playerPi at time t is based on the (still in-

correct) presumption that other players are playingrandomlybut jointly according to

their joint empirical frequencies, i.e., each player views all other players as a collective

group.

Let za(t) be the percentage of stages at which all players chose the joint action
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profilea ∈ A up to timet− 1, i.e.,

zā(t) :=
1

t

t−1∑
τ=0

I{a(τ) = ā}. (3.2)

Let z(t) denote the empirical frequency vector formed by the components{zā(t)}ā∈A.

Note that the dimension ofz(t) is the cardinality|A|.

Similarly, letza−i

−i (t) be the percentage of stages at which players other then player

Pi have chosen the joint action profilea−i ∈ A−i up to timet− 1, i.e.,

z
ā−i

−i (t) :=
1

t

t−1∑
τ=0

I{a−i(τ) = ā−i}, (3.3)

which, givenz(t), can also be expressed as

z
ā−i

−i (t) =
∑

ai∈Ai

z(ai,ā−i)(t).

Let z−i(t) denote the empirical frequency vector formed by the components

{zā−i

−i (t)}ā−i∈A−i
. Note that the dimension ofz−i(t) is the cardinality|×i6=jAj|.

Similarly to FP, playerPi’s action at timet is based on an expected utility for the

actionāi ∈ Ai, but now based on the joint action model of opponents given by1

Ui(āi, z−i(t)) :=
∑

a−i∈A−i

Ui(āi, a−i)z
a−i

−i (t). (3.4)

In the JSFP process, playerPi uses this expected utility by selecting an action at time

t from the set

BRi(z−i(t)) := {ãi ∈ Ai : Ui(ãi, z−i(t)) = max
ai∈Ai

Ui(ai, z−i(t))}.

Note that the utility as expressed in (3.4) is linear inz−i(t).

When written in this form, JSFP appears to have a computational burden for each

player that is even higher than that of FP, since tracking the empirical frequencies

1Note that we use the same notation for the related quantitiesU(ai, a−i), U(ai, q−i), andU(ai, z−i),
where the latter two are derived from the first as defined in equations (3.1) and (3.4), respectively.
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z−i(t) ∈ ∆(A−i) of the joint actions of the other players is more demanding for player

Pi than tracking the empirical frequenciesq−i(t) ∈ ×j 6=i∆(Aj) of the actions of the

other players individually, where∆(A) denotes the set of probability distributions

on a finite setA. However, it is possible to rewrite JSFP to significantly reduce the

computational burden on each player.

To choose an action at any time,t, playerPi using JSFP needs only the predicted

utilitiesUi(āi, z−i(t)) for eachāi ∈ Ai. Substituting (3.3) into (3.4) results in

Ui(āi, z−i(t)) =
1

t

t−1∑
τ=0

Ui(āi, a−i(τ)),

which is the average utility playerPi would have received if action̄ai had been chosen

at every stage up to timet − 1 and other players used the same actions. This average

utility, denoted byV āi
i (t), admits the following simple recursion,

V āi
i (t+ 1) =

t

t+ 1
V āi

i (t) +
1

t+ 1
Ui(āi, a−i(t)).

The important implication is that JSFP dynamics can be implementedwithout requir-

ing each player to track the empirical frequencies of the joint actions of the other

players andwithoutrequiring each player to compute an expectation over the space of

the joint actions of all other players. Rather, each player using JSFP merely updates

the predicted utilities for each available action using the recursion above, and chooses

an action each stage with maximal predicted utility.

An interesting feature of JSFP is that each strict Nash equilibrium has an “absorp-

tion” property as summarized in Proposition 3.2.1.

Proposition 3.2.1. In any finiten-person game, if at any timet > 0, the joint action

a(t) generated by a JSFP process is a strict Nash equilibrium, thena(t + τ) = a(t)

for all τ > 0.
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Proof. For each playerPi ∈ P and for all actionsai ∈ Ai,

Ui(ai(t), z−i(t)) ≥ Ui(ai, z−i(t)).

Sincea(t) is a strict Nash equilibrium, we know that for all actionsai ∈ Ai\ai(t)

Ui(ai(t), a−i(t)) > Ui(ai, a−i(t)).

By writing z−i(t+ 1) in terms ofz−i(t) anda−i(t),

Ui(ai(t), z−i(t+ 1)) =
t

t+ 1
Ui(ai(t), z−i(t)) +

1

t+ 1
Ui(ai(t), a−i(t)).

Therefore,ai(t) is the only best response toz−i(t+ 1),

Ui(ai(t), z−i(t+ 1)) > Ui(ai, z−i(t+ 1)), ∀ai ∈ Ai\ai(t).

A strict Nash equilibrium neednot possess this absorption property in general for

standard FP when there are more than two players.2

The convergence properties, even for potential games, of JSFP in the case of more

than two players is unresolved.3 We will establish convergence of JSFP in the case

where players use some sort of inertia, i.e., players are reluctant to switch to a better

action.

TheJSFP with inertia process is defined as follows. Players choose their actions

according to the following rules:

2To see this, consider the following 3 player identical interest game. For allPi ∈ P, let Ai =
{a, b}. Let the utility be defined as follows:U(a, b, a) = U(b, a, a) = 1, U(a, a, a) = U(b, b, a) =
0, U(a, a, b) = U(b, b, b) = 1, U(a, b, b) = −1, U(b, a, b) = −100. Suppose the first action played
is a(1) = {a, a, a}. In the FP process each player will seek to deviate in the ensuing stage,a(2) =
{b, b, b}. The joint action{b, b, b} is a strict Nash equilibrium. One can easily verify that the ensuing
action in a FP process will bea(3) = {a, b, a}. Therefore, a strict Nash equilibrium is not absorbing in
the FP process with more than 2 players.

3For two player games, JSFP and standard FP are equivalent, hence the convergence results for FP
hold for JSFP.
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JSFP–1: If the actionai(t − 1) chosen by playerPi at timet − 1 belongs to

BRi(z−i(t)), thenai(t) = ai(t− 1).

JSFP–2: Otherwise, playerPi chooses an action,ai(t), at timet according to

the probability distribution

αi(t)βi(t) + (1− αi(t))v
ai(t−1),

whereαi(t) is a parameter representing playerPi’s willingness to optimize at

time t, βi(t) ∈ ∆(Ai) is any probability distribution whose support is contained

in the setBRi(z−i(t)), andvai(t−1) is the probability distribution with full sup-

port on the actionai(t− 1), i.e.,

vai(t−1) =



0
...

0

1

0
...

0


where the “1” occurs in the coordinate of∆(Ai) associated withai(t− 1).

According to these rules, playerPi will stay with the previous actionai(t − 1)

with probability1 − αi(t) even when there is a perceived opportunity for utility im-

provement. We make the following standing assumption on the players’ willingness to

optimize.

Assumption 3.2.1.There exist constantsε and ε̄ such that for all timet ≥ 0 and for

all playersPi ∈ P,

0 < ε < αi(t) < ε̄ < 1.
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This assumption implies that players are always willing to optimize with some

nonzero inertia4.

The following result shows a similar absorption property of pure Nash equilibria

in a JSFP with inertia process.

Proposition 3.2.2. In any finiten-person game, if at any timet > 0 the joint action

a(t) generated by a JSFP with inertia process is 1) a pure Nash equilibrium and 2) the

actionai(t) ∈ BRi(z−i(t)) for all playersPi ∈ P, thena(t+ τ) = a(t) for all τ > 0.

Proof. For each playerPi ∈ P and for all actionsai ∈ Ai,

Ui(ai(t), z−i(t)) ≥ Ui(ai, z−i(t)).

Sincea(t) is a pure Nash equilibrium, we know that for all actionsai ∈ Ai

Ui(ai(t), a−i(t)) ≥ Ui(ai, a−i(t)).

By writing z−i(t+ 1) in terms ofz−i(t) anda−i(t),

Ui(ai(t), z−i(t+ 1)) =
t

t+ 1
Ui(ai(t), z−i(t)) +

1

t+ 1
Ui(ai(t), a−i(t)).

Therefore,ai(t) is also a best response toz−i(t+ 1),

Ui(ai(t), z−i(t+ 1)) ≥ Ui(ai, z−i(t+ 1)), ∀ai ∈ Ai.

Sinceai(t) ∈ BRi(z−i(t+ 1)) for all players, thena(t+ 1) = a(t).

3.2.3 Convergence to Nash Equilibrium

The following establishes the main result regarding the convergence of JSFP with in-

ertia.

We will assume that no player is indifferent between distinct strategies5.

4This assumption can be relaxed to holding for sufficiently larget, as opposed to allt.
5One could alternatively assume that all pure equilibria are strict.
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Assumption 3.2.2.Player utilities satisfy

Ui(a
1
i , a−i) 6= Ui(a

2
i , a−i), ∀ a1

i , a
2
i ∈ Ai, a

1
i 6= a2

i , ∀ a−i ∈ A−i, ∀ i ∈ {1, ..., n}.

(3.5)

Theorem 3.2.1. In any finite generalized ordinal potential game in which no player

is indifferent between distinct strategies as in Assumption 3.2.2, the action profiles

a(t) generated by JSFP with inertia under Assumption 3.2.1 converge to a pure Nash

equilibrium almost surely.

We provide a complete proof of Theorem 3.2.1 in the Appendix of this chapter. We

encourage the reader to first review the proof of fading memory JSFP with inertia in

Theorem 3.3.1 of the following section.

3.3 Fading Memory JSFP with Inertia

We now analyze the case where players view recent information as more important.

In fading memory JSFP with inertia, players replace true empirical frequencies with

weighted empirical frequencies defined by the recursion

z̃
ā−i

−i (0) := I{a−i(0) = ā−i},

z̃
ā−i

−i (t) := (1− ρ)z̃
ā−i

−i (t− 1) + ρI{a−i(t− 1) = ā−i}, ∀t ≥ 1,

where0 < ρ ≤ 1 is a parameter with(1−ρ) being the discount factor. Letz̃−i(t) denote

the weighted empirical frequency vector formed by the components{z̃ā−i

−i (t)}ā−i∈A−i
.

Note that the dimension of̃z−i(t) is the cardinality|A−i|.

One can identify the limiting cases of the discount factor. Whenρ = 1 we have

“Cournot” beliefs, where only the most recent information matters. In the case when

ρ is not a constant, but ratherρ(t) = 1/(t + 1), all past information is given equal

importance as analyzed in Section 3.2.
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Utility prediction and action selection with fading memory are done in the same

way as in Section 3.2, and in particular, in accordance with rules JSFP-1 and JSFP-2.

To make a decision, playerPi needs only the weighted average utility that would have

been received for each action, which is defined for actionāi ∈ Ai as

Ṽ āi
i (t) := Ui(āi, z̃−i(t)) =

∑
a−i∈A−i

Ui(āi, a−i)z̃
a−i

−i (t).

One can easily verify that the weighted average utilityṼ āi
i (t) for actionāi ∈ Ai admits

the recursion

Ṽ āi
i (t) = ρUi(āi, a−i(t− 1)) + (1− ρ)Ṽ āi

i (t− 1).

Once again, playerPi is not required to track the weighted empirical frequency vector

z̃−i(t) or required to compute expectations overA−i.

As before, pure Nash equilibria have an absorption property under fading memory

JSFP with inertia.

Proposition 3.3.1. In any finiten-person game, if at any timet > 0 the joint action

a(t) generated by a fading memory JSFP with inertia process is 1) a pure Nash equilib-

rium and 2) the actionai(t) ∈ BRi(z̃−i(t)) for all playersPi ∈ P, thena(t+ t̃) = a(t)

for all t̃ > 0.

Proof. For each playerPi ∈ P and for all actionsai ∈ Ai,

Ui(ai(t), z̃−i(t)) ≥ Ui(ai, z̃−i(t)).

Sincea(t) is a pure Nash equilibrium, we know that for all actionsai ∈ Ai

Ui(ai(t), a−i(t)) ≥ Ui(ai, a−i(t)).

By writing z̃−i(t+ 1) in terms ofz̃−i(t) anda−i(t),

Ui(ai(t), z̃−i(t+ 1)) = (1− ρ)Ui(ai(t), z̃−i(t)) + ρUi(ai(t), a−i(t)).
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Therefore,ai(t) is also a best response toz̃−i(t+ 1),

Ui(ai(t), z̃−i(t+ 1)) ≥ Ui(ai, z̃−i(t+ 1)), ∀ai ∈ Ai.

Sinceai(t) ∈ BRi(z̃−i(t+ 1)) for all players, thena(t+ 1) = a(t).

The following theorem establishes convergence to Nash equilibrium for fading

memory JSFP with inertia.

Theorem 3.3.1.In any finite generalized ordinal potential game in which no player is

indifferent between distinct strategies as in Assumption 3.2.2, the action profilesa(t)

generated by a fading memory JSFP with inertia process satisfying Assumption 3.2.1

converge to a pure Nash equilibrium almost surely.

Proof. The proof follows a similar structure to the proof of Theorem 6.2 in [You05].

At time t, let a0 := a(t). There exists a positive constantT , independent oft, such

that if the current actiona0 is repeatedT consecutive stages, i.e.a(t) = ... = a(t +

T − 1) = a0, thenBRi(z̃−i(t + T )) = BRi(a
0
−i)

6 for all players. The probability

of such an event is at least(1 − ε)n(T−1), wheren is the number of players. If the

joint actiona0 is an equilibrium, then by Proposition 3.3.1 we are done. Otherwise,

there must be at least one playerPi(1) ∈ P such thata0
i(1) 6∈ BRi(1)(a

0
−i(1)) and hence

a0
i(1) 6∈ BRi(1)(z̃−i(1)(t+ T )).

Consider now the event that, at timet + T , exactly one player switches to a dif-

ferent action, i.e.,a1 := a(t + T ) = (a∗i(1), a
0
−i(1)) for some playerPi(1) ∈ P where

Ui(1)(a
1) > Ui(1)(a

0). This event happens with probability at leastε(1 − ε)n−1. Note

that ifφ(·) is a generalized ordinal potential function for the game, thenφ(a0) < φ(a1).

Continuing along the same lines, if the current actiona1 is repeatedT consecutive

stages, i.e.a(t+ T ) = ... = a(t+ 2T − 1) = a1, thenBRi(z̃−i(t+ 2T )) = BRi(a
1
−i)

6Since no player is indifferent between distinct strategies, the best response to the current action
profile,BRi(a0

−i), is a singleton.
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for all players. The probability of such an event is at least(1 − ε)n(T−1). If the joint

actiona1 is an equilibrium, then by Proposition 3.3.1, we are done. Otherwise, there

must be at least one playerPi(2) ∈ P such thata1
i(2) 6∈ BRi(2)(a

1
−i(2)) and hence

a1
i(2) 6∈ BRi(2)(z̃−i(2)(t+ 2T )).

One can repeat the arguments above to construct a sequence of profiles

a0, a1, a2, ..., am, whereak = (a∗i(k), a
k−1
−i(k)) for all k ≥ 1, with the property that

φ(a0) < φ(a1) < ... < φ(am),

andam is an equilibrium. This means that given{z̃−i(t)}n
i=1, there exist constants

T̃ = (|A|+ 1)T > 0,

ε̃ =
(
ε(1− ε)n−1

)|A|(
(1− ε)n(T−1)

)|A|+1
> 0,

both of which are independent oft, such that the following event happens with prob-

ability at leastε̃: a(t + T̃ ) is an equilibrium andai(t + T̃ ) ∈ BRi(z̃−i(t + T̃ )) for

all playersPi ∈ P. This implies thata(t) converges to a pure equilibrium almost

surely.

3.4 Congestion Games and Distributed Traffic Routing

In this section, we illustrate the main results on congestion games, as defined in Sec-

tion 2.3.3, which are a special case of the generalized ordinal potential games ad-

dressed in Theorems 3.2.1 and 3.3.1. We illustrate these results on a simulation of

distributed traffic routing. We go on to discuss how to modify player utilities in dis-

tributed traffic routing to allow a centralized planner to achieve a desired collective

objective through distributed learning.
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3.4.1 Distributed Traffic Routing

We consider a congestion game, as defined in Section 2.3.3, with 100 players, or

drivers, seeking to traverse from node A to node B along10 different parallel roads

as illustrated in Figure 3.1. Each driver can select any road as a possible route. In

A B

r
1

r
2

r
10

Figure 3.1: Fading Memory JSFP with Inertia: Congestion Game Example – Network Topol-
ogy

terms of congestion games, the set of resources is the set of roads,R, and each player

can select one road, i.e.,Ai = R.

Each road has a quadratic cost function with positive (randomly chosen) coeffi-

cients,

cri
(k) = aik

2 + bik + ci, i = 1, ..., 10,

wherek represent the number of vehicles on that particular road. The actual coeffi-

cients are unimportant as we are just using this example as an opportunity to illustrate

the convergence properties of the algorithm fading memory JSFP with inertia. This

cost function may represent the delay incurred by a driver as a function of the number

of other drivers sharing the same road.

We simulated a case where drivers choose their initial routes randomly, and every
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day thereafter, adjusted their routes using fading memory JSFP with inertia. The pa-

rametersαi(t) are chosen as0.5 for all days and all players, and the fading memory

parameterρ is chosen as0.03. The number of vehicles on each road fluctuates initially

and then stabilizes as illustrated in Figure 3.2. Figure 3.3 illustrates the evolution of the

congestion cost on each road. One can observe that the congestion cost on each road

converges approximately to the same value, which is consistent with a Nash equilib-

rium with large number of drivers. This behavior resembles an approximate “Wardrop

equilibrium” [War52], which represents a steady-state situation in which the conges-

tion cost on each road is equal due to the fact that, as the number of drivers increases,

the effect of an individual driver on the traffic conditions becomes negligible.
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Figure 3.2: Fading Memory JSFP with Inertia: Evolution of Number of Vehicles on Each
Route

Note that FP could not be implemented even on this very simple congestion game.

A driver using FP would need to track the empirical frequencies of the choices of the

99 other drivers and compute an expected utility evaluated over a probability space of
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Figure 3.3: Fading Memory JSFP with Inertia: Evolution of Congestion Cost on Each Route

dimension1099.

It turns out that JSFP, fading memory JSFP, or other virtual payoff based learning

algorithms are strongly connected to actual driver behavioral models. Consider the

driver adjustment process considered in [BPK91] which is illustrated in Figure 3.4.

The adjustment process highlighted is precisely JSFP with Inertia.

3.4.2 Incorporating Tolls to Minimize the Total Congestion

It is well known that a Nash equilibrium may not minimize the total congestion ex-

perienced by all drivers [Rou03]. In this section, we show how a global planner can

minimize the total congestion by implementing tolls on the network. The results are

applicable to general congestion games, but we present the approach in the language

of distributed traffic routing.
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Figure 3.4: Example of a Driver Adjustment Process

The total congestion experienced by all drivers on the network is

Tc(a) :=
∑
r∈R

σr(a)cr(σr(a)).

Define a new congestion game where each driver’s utility takes the form

Ui(a) = −
∑
r∈ai

(
cr(σr(a)) + tr(σr(a))

)
,

wheretr(·) is the toll imposed on roadr which is a function of the number of users of

roadr.

The following proposition, which is a special case of Proposition 5.3.1, outlines

how to incorporate tolls so that the minimum congestion solution is a Nash equilib-

rium. The approach is similar to the taxation approaches for nonatomic congestion

games proposed in [Mil04, San02].

41



Proposition 3.4.1. Consider a congestion game of any network topology. If the im-

posed tolls are set as

tr(k) = (k − 1)[cr(k)− cr(k − 1)], ∀k ≥ 1,

then the total negative congestion experienced by all drivers,φc(a) := −Tc(a), is a

potential function for the congestion game with tolls.

By implementing the tolling scheme set forth in Proposition 3.4.1, we guarantee

that all action profiles that minimize the total congestion experienced on the network

are equilibria of the congestion game with tolls. However, there may be addition equi-

libria at which an inefficient operating condition can still occur. The following propo-

sition establishes the uniqueness of a strict Nash equilibrium for congestion games of

parallel network topologies such as the one considered in this example.

Proposition 3.4.2.Consider a congestion game with nondecreasing congestion func-

tions where each driver is allowed to select any one road, i.e.Ai = R for all drivers.

If the congestion game has at least one strict equilibrium, then all equilibria have the

same aggregate vehicle distribution over the network. Furthermore, all equilibria are

strict.

Proof. Suppose action profilesa1 anda2 are equilibria witha1 being a strict equi-

librium. We will use the shorthand notationσa1

r to representσr(a
1). Let σ(a1) :=

(σa1

r1
, ..., σa1

rn
) andσ(a2) := (σa2

r1
, ..., σa2

rn
) be the aggregate vehicle distribution over the

network for equilibriuma1 anda2. If σ(a1) 6= σ(a2), there exists a roada such that

σa1

a > σa2

a and a roadb such thatσa1

b < σa2

b . Therefore, we know that

ca(σ
a1

a ) ≥ ca(σ
a2

a + 1),

cb(σ
a2

b ) ≥ cb(σ
a1

b + 1).
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Sincea1 anda2 are equilibrium witha1 being strict,

ca(σ
a1

a ) < cri
(σa1

ri
+ 1), ∀ri ∈ R,

cb(σ
a2

b ) ≤ cri
(σa2

ri
+ 1), ∀ri ∈ R.

Using the above inequalities, we can show that

ca(σ
a1

a ) ≥ ca(σ
a2

a + 1) ≥ cb(σ
a2

b ) ≥ cb(σ
a1

b + 1) > ca(σ
a1

a ),

which gives us a contradiction. Thereforeσ(a1) = σ(a2). Sincea1 is a strict equilib-

rium, thena2 must be a strict equilibrium as well.

When the tolling scheme set forth in Proposition 3.4.1 is applied to the congestion

game example considered previously, the resulting congestion game with tolls is a po-

tential game in which no player is indifferent between distinct strategies. Proposition

3.4.1 guarantees us that the action profiles that minimize the total congestion experi-

enced by all drivers on the network are in fact strict equilibria of the congestion game

with tolls. Furthermore, if the new congestion functions are nondecreasing7, then by

Proposition 3.4.2, all strict equilibria must have the same aggregate vehicle distribu-

tion over the network, and therefore must minimize the total congestion experienced

by all drivers on the network. Therefore, the action profiles generated by fading mem-

ory JSFP with inertia converge to an equilibrium that minimizes the total congestion

experienced by all users, as shown in Figure 3.5.

3.5 Concluding Remarks and Future Work

We have analyzed the long-term behavior of a large number of players in large-scale

games where players are limited in both their observational and computational capa-

bilities. In particular, we analyzed a version of JSFP and showed that it accommodates

7Simple conditions on the original congestion functions can be established to guarantee that the new
congestion functions, i.e congestion plus tolls, are nondecreasing.
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Figure 3.5: Fading Memory JSFP with Inertia: Evolution of Total Congestion Experienced by
All Drivers with and without Tolls.

inherent player limitations in information gathering and processing. Furthermore, we

showed that JSFP has guaranteed convergence to a pure Nash equilibrium in all gen-

eralized ordinal potential games, which includes but is not limited to all congestion

games, when players use some inertia either with or without exponential discounting

of the historical data. The methods were illustrated on a transportation congestion

game, in which a large number of vehicles make daily routing decisions to optimize

their own objectives in response to the aggregate congestion on each road of interest.

An interesting continuation of this research would be the case where players observe

only the actual utilities they receive. This situation will be the focus of Chapter 5.

The method of proof of Theorems 3.2.1 and 3.3.1 relies on inertia to derive a pos-

itive probability of a single player seeking to make an utility improvement, thereby

increasing the potential function. This suggests a convergence rate that is exponential

in the game size, i.e., number of players and actions. It should be noted that inertia
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is simply a proof device that assures convergence for generic potential games. The

proof provides just one out of multiple paths to convergence. The simulations reflect

that convergence can be much faster. Indeed, simulations suggest that convergence

is possible even in the absence of inertia but not necessarily for all potential games.

Furthermore, recent work [HM06] suggests that convergence rates of a broad class

of distributed learning processes can be exponential in the game size as well, and so

this seems to be a limitation in the framework of distributed learning rather than any

specific learning process (as opposed to centralized algorithms for computing an equi-

librium).

3.6 Appendix to Chapter 3

3.6.1 Proof of Theorem 3.2.1

This section is devoted to the proof of Theorem 3.2.1. It will be helpful to note the

following simple observations:

1. The expression forUi(āi, z−i(t)) in equation (3.4) is linear inz−i(t).

2. If an action profile,a0 ∈ A, is repeated over the interval[t, t+N − 1], i.e.,

a(t) = a(t+ 1) = ... = a(t+N − 1) = a0,

thenz(t+N) can be written as

z(t+N) =
t

t+N
z(t) +

N

t+N
va0

,

and likewisez−i(t+N) can be written as

z−i(t+N) =
t

t+N
z−i(t) +

N

t+N
va0

−i .
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We begin by defining the quantitiesδi(t), Mu, mu, andγ as follows. Assume that

playerPi played a best response at least one time in the period[0, t], wheret ∈ [0,∞).

Define

δi(t) := min{0 ≤ τ ≤ t : ai(t− τ) ∈ BRi(zi(t− τ))}.

In other words,t − δi(t) is the last time in the period[0, t] at which playerPi played

a best response. If playerPi never played a best response in the period[0, t], then we

adopt the conventionδi(t) = ∞. Note that

ai(t− τ) = ai(t), ∀τ ∈ {0, 1, ...,min{δi(t), t}}.

Now define

Mu := max{|Ui(a
1)− Ui(a

2)| : a1, a2 ∈ A,Pi ∈ P},

mu := min{|Ui(a
1)− Ui(a

2)| : |Ui(a
1)− Ui(a

2)| > 0, a1, a2 ∈ A,Pi ∈ P},

γ := dMu/mue,

whered·e denotes integer ceiling.

The proof of fading memory JSFP with inertia relied on a notion of memory dom-

inance. This means that if the current action profile is repeated a sufficient number of

times (finite and independent of time) then a best response to the weighted empirical

frequencies is equivalent to a best response to the current action profile and hence will

increase the potential provided that there is only a unique deviator. This will always

happen with at least a fixed (time independent) probability because of the players’

inertia.

In the non-discounted case the memory dominance approach will not work for the

reason that the probability of dominating the memory because of the players’ inertia

diminishes with time. However, the following claims show that one does not need to

dominate the entire memory, but rather just the portion of time for which the player
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was playing a suboptimal action. By dominating this portion of the memory, one can

guarantee that a unilateral best response to the empirical frequencies will increase the

potential. This is the fundamental idea in the proof of Theorem 3.2.1.

Claim 3.6.1. Consider a playerPi with δi(t) <∞. Lett1 be any finite integer satisfy-

ing

t1 ≥ γδi(t).

If an action profile,a0 ∈ A, is repeated over the interval[t, t+ t1], i.e.,

a(t) = a(t+ 1) = · · · = a(t+ t1) = a0,

then

âi ∈ BRi(z−i(t+ t1 + 1)) ⇒ Ui(âi, a
0
−i) ≥ Ui(a

0
i , a

0
−i),

i.e., playerPi’s best response at timet+ t1 +1 cannot be a worse response toa0
−i than

a0
i .

Proof. Sinceâi ∈ BRi(z−i(t+ t1 + 1)),

Ui(âi, z−i(t+ t1 + 1))− Ui(a
0
i , z−i(t+ t1 + 1)) ≥ 0.

Expressingz−i(t + t1 + 1) as a summation over the intervals[0, t − δi(t) − 1], [t −

δi(t), t− 1], and[t, t+ t1] and using the definition (3.4) leads to

(t1 + 1)
[
Ui(âi, a

0
−i)− Ui(a

0
i , a

0
−i)

]
+

t−1∑
τ=t−δi(t)

[
Ui(âi, a−i(τ))− Ui(a

0
i , a−i(τ))

]
+(t− δi(t))

[
Ui(âi, z−i(t− δi(t)))− Ui(a

0
i , z−i(t− δi(t)))

]
≥ 0.

Now, since

ai(t− δi(t)) = ai(t− δi(t) + 1) = · · · = ai(t) = a0
i ∈ BRi(z−i(t− δi(t))),
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meaning that the third term above is negative, and so

(t1 + 1)
[
Ui(âi, a

0
−i)− Ui(a

0
i , a

0
−i)

]
+

t−1∑
τ=t−δi(t)

[
Ui(âi, a−i(τ))− Ui(a

0
i , a−i(τ))

]
≥ 0.

This implies that

[
Ui(âi, a

0
−i)− Ui(a

0
i , a

0
−i)

]
≥ −Muδi(t)

t1 + 1
> −mu,

or, alternatively, [
Ui(a

0
i , a

0
−i)− Ui(âi, a

0
−i)

]
< mu.

If the quantity in brackets were positive, this would violate the definition ofmu —

unlesŝai = a0
i . In either case,

Ui(âi, a
0
−i)− Ui(a

0
i , a

0
−i) ≥ 0.

There are certain action profile/empirical frequency values where the next play is

“forced”. Define the time-dependent (forced-move) setF(t) ⊂ A×∆(A) as

(ā, z̄) ∈ F(t)

⇔

āi ∈ BRi

(
t

t+ 1
z̄−i +

1

t+ 1
vā−i

)
, ∀i ∈ {1, ..., n} .

So the condition(a(t), z(t)) ∈ F(t), implies that for alli, “today’s” action necessarily

lies in “tomorrow’s” best response, i.e.,

ai(t) ∈ BRi(z−i(t+ 1)).

By the rule JSFP-1, the next playai(t+ 1) = ai(t) is forcedfor all i ∈ {1, ..., N}.
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Now define

π(t; a(t), z(t)) := min {τ ≥ 0 : (a(t+ τ), z(t+ τ)) 6∈ F(t+ τ)} . (3.6)

If this is never satisfied, then setπ(t; a(t), z(t)) = ∞.

For the sake of notational simplicity, we will drop the explicit dependence ona(t)

andz(t) and simply writeπ(t) instead ofπ(t; a(t), z(t)).

A consequence of the definition ofπ(t) is that for a givena(t) andz(t), 1) a(t)

mustbe repeated over the interval[t, t + π(t)]. Furthermore, at timet + π(t) + 1, at

least oneplayer can improve (over yet another repeated play ofa(t)) by playing a best

response at timet+ π(t) + 1. Furthermore, the probability thatexactly oneplayer will

switch to a best response action at timet+ π(t) + 1 is at leastε(1− ε)n−1.

The following claim shows that this improvement opportunity remains even ifa(t)

is repeated forlonger thanπ(t) (because of inertia).

Claim 3.6.2. Leta(t) andz(t) be such thatπ(t) <∞. Lett1 be any integer satisfying

π(t) ≤ t1 <∞. If

a(t) = a(t+ 1) = · · · = a(t+ π(t)) = · · · = a(t+ t1),

then

ai(t) 6∈ BRi(z−i(t+ t1 + 1)), for somei ∈ {1, ..., n}.

Proof. Let i ∈ {1, ..., n} be such that

ai(t) 6∈ BRi(z−i(t+ π(t) + 1))

and

ai(t) ∈ BRi(z−i(t+ π(t))).
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The existence of such ani is assured by the definition ofπ(t). Pick âi ∈ BRi(z−i(t+

π(t) + 1)). We have

Ui(âi, z−i(t+ π(t) + 1))− Ui(ai(t), z−i(t+ π(t) + 1))

= [Ui(âi, z−i(t+ π(t)))− Ui(ai(t), z−i(t+ π(t)))]
t+ π(t)

t+ π(t) + 1

+ [Ui(âi, a−i(t))− Ui(ai(t), a−i(t))]
1

t+ π(t) + 1
> 0.

Sinceai(t) ∈ BRi(z−i(t+ π(t))), we must have

Ui(âi, a−i(t))− Ui(ai(t), a−i(t)) > 0.

This implies

Ui(âi, z−i(t+ t1 + 1))− Ui(ai(t), z−i(t+ t1 + 1))

= [Ui(âi, z−i(t+ π(t) + 1))− Ui(ai(t), z−i(t+ π(t) + 1))]
t+ π(t) + 1

t+ t1 + 1

+ [Ui(âi, a−i(t))− Ui(ai(t), a−i(t))]
t1 − π(t)

t+ t1 + 1
> 0.

Claim 3.6.3. If, at any time,a(t) is not an equilibrium, thenπ(t) ≤ γt.

Proof. Let a0 := a(t). Sincea0 is not an equilibrium,

a0
i 6∈ BRi(a

0
−i), for somei ∈ {1, ..., n}.

Pick âi ∈ BRi(a
0
−i) so thatUi(âi, a

0
−i)− Ui(a

0
i , a

0
−i) > mu. If

a(t) = a(t+ 1) = · · · = a(t+ γt) = a0,

then

Ui(âi, z−i(t+ γt+ 1))− Ui(a
0
i , z−i(t+ γt+ 1))

=
t[Ui(âi, z−i(t))− Ui(a

0
i , z−i(t))] + (γt+ 1)[Ui(âi, a

0
−i)− Ui(a

0
i , a

0
−i)]

t+ γt+ 1

≥ −tMu + (γt+ 1)mu

t+ γt+ 1

> 0.
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Claim 3.6.4. Consider a finite generalized ordinal potential game with a potential

functionφ(·) with player utilities satisfying Assumption 3.2.2. For any timet ≥ 0,

suppose that

1. a(t) is not an equilibrium; and

2. max1≤i≤n δi(t) ≤ δ̄ for somēδ ≤ t.

Define

ψ(t) := 1 + max
{
π(t), γδ̄

}
.

Thenψ(t) ≤ 1 + γt and

Pr [φ(a(t+ ψ(t))) > φ(a(t)) | a(t), z(t)] ≥ ε(1− ε)n(1+γδ̄)−1,

and

max
1≤i≤n

δi(t+ ψ(t)) ≤ 1 + (1 + γ)δ̄.

Proof. Sincea(t) is not an equilibrium, Claim 3.6.3 implies thatπ(t) ≤ γt, which in

turn implies the above upper bound onψ(t).

First consider the case whereπ(t) ≥ γδ̄, i.e.,ψ(t) = 1 + π(t). According to the

definition of π(t) in equation (3.6),a(t) mustbe repeated as a best response in the

period[t, t+ π(t)]. Furthermore, we must have

max
1≤i≤n

δi(t+ ψ(t)) ≤ 1

andai(t) 6∈ BRi(z−i(t+ψ(t))) for at least one playerPi. The probability that exactly

one such playerPi will switch to a choice different thanai(t) at timet + ψ(t) is at

leastε(1− ε)n−1. But, by Claim 3.6.1 and no-indifference Assumption 3.2.2, such an

event would cause

Ui(a(t+ π(t) + 1)) > Ui(a(t)) ⇒ φ(a(t+ π(t) + 1)) > φ(a(t)).
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Now consider the case whereπ(t) < γδ̄, i.e.,ψ(t) = 1 + γδ̄. In this case,

max
1≤i≤n

δi(t+ ψ(t)) ≤ 1 + γδ̄ + δ̄.

Moreover, the event

a(t) = · · · = a(t+ γδ̄)

will occur with probability at least8 (1− ε)nγδ̄. Conditioned on this event, Claim 3.6.2

provides that exactly one playerPi will switch to a choice different thanai(t) at time

t + ψ(t) with probability at leastε(1 − ε)n−1. By Claim 3.6.1 and no-indifference

Assumption 3.5, this would cause

Ui(a(t+ ψ(t))) > Ui(a(t)) ⇒ φ(a(t+ ψ(t))) > φ(a(t)).

Proof of Theorem 3.2.1

It suffices to show that there exists a non-zero probability,ε∗ > 0, such that the follow-

ing statement holds. For anyt ≥ 0, a(t) ∈ A, andz(t) ∈ ∆(A), there exists a finite

time t∗ ≥ t such that, for some equilibriuma∗,

Pr [a(τ) = a∗,∀τ ≥ t∗ | a(t), {z−i(t)}n
i=1] ≥ ε∗. (3.7)

In other words, the probability of convergence to an equilibrium by timet∗ is at least

ε∗. Sinceε∗ does notdepend ont, a(t), or z(t), this will imply that the action profile

converges to an equilibrium almost surely.

We will construct a series of events that can occur with positive probability to

establish the bound in equation (3.7).

8In fact, a tighter bound can be derived by exploiting the forced moves for a duration ofπ(t).
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Let t0 = t + 1. All players will play a best response at timet0 with probability at

leastεn. Therefore, we have

Pr

[
max
1≤i≤n

δi(t0) = 0 | a(t), {z−i(t)}n
i=1

]
≥ εn. (3.8)

Assume thata(t0) is not an equilibrium. Otherwise, according to Proposition 3.2.2,

a(τ) = a(t0) for all τ ≥ t0.

From Claim 3.6.4, definet1 andδ1 as

δ1 := 1 + (1 + γ)δ0,

t1 := t0 + 1 + max{π(t0), γδ0},

≤ t0 + 1 + γt0 = 1 + (1 + γ)t0,

whereδ0 := 0. By Claim 3.6.4,

Pr [φ(a(t1)) > φ(a(t0)) | a(t0), {z−i(t0)}n
i=1] ≥ ε(1− ε)n(1+γδ0)−1

and

max
1≤i≤n

δi(t1) ≤ δ1.

Similarly, for k > 0 we can recursively define

δk := 1 + (1 + γ)δk−1,

= (1 + γ)kδ0 +
k−1∑
j=0

(1 + γ)j,

=
k−1∑
j=0

(1 + γ)j,

and

tk := tk−1 + 1 + max{π(tk−1), γδk−1},

≤ 1 + (1 + γ)tk−1

≤ (1 + γ)kt0 +
k−1∑
j=0

(1 + γ)j,
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where

Pr [φ(a(tk)) > φ(a(tk−1)) | a(tk−1), {z−i(tk−1)}n
i=1] ≥ ε(1− ε)n(1+γδk−1)−1

and

max
1≤i≤n

δi(tk) ≤ δk,

as long asa(tk−1) is not an equilibrium.

Therefore, one can construct a sequence of profilesa(t0), a(t1), ..., a(tk) with the

property thatφ(a(t0)) < φ(a(t1)) < ... < φ(a(tk)). Since in a finite generalized

ordinal potential game,φ(a(tk)) cannot increase indefinitely ask increases, we must

have

Pr [a(tk) is an equilibrium for sometk ∈ [t,∞) | a(t), {z−i(t)}n
i=1] ≥ εn

|A|−1∏
k=0

ε(1− ε)n(1+γδk)−1,

whereεn comes from (3.8). Finally, from Claim 3.6.1 and Assumption 3.2.2, the

above inequality together with

Pr [a(tk) = · · · = a(tk + γδk) | a(tk), {z−i(tk)}n
i=1] ≥ (1− ε)nγδk ≥ (1− ε)nγδ|A|

implies that for some equilibrium,a∗,

Pr [a(τ) = a∗, ∀τ ≥ t∗ | a(t), {z−i(t)}n
i=1] ≥ ε∗,

where

t∗ = t|A| + γδ|A| + 1 = (1 + γ)|A|t0 +

|A|∑
j=0

(1 + γ)j,

ε∗ =

(
εn

|A|−1∏
k=0

ε(1− ε)n(1+γδk)−1

)(
(1− ε)nγδ|A|

)
.

Sinceε∗ does not depend ont this concludes the proof.
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CHAPTER 4

Regret Based Dynamics for Weakly Acyclic Games

No-regret algorithms have been proposed to control a wide variety of multi-agent sys-

tems. The appeal of no-regret algorithms is that they are easily implementable in large

scale multi-agent systems because players make decisions using only retrospective or

“regret based” information. Furthermore, there are existing results proving that the col-

lective behavior will asymptotically converge to a set of points of “no-regret” in any

game. We illustrate, through a simple example, that no-regret points need not reflect

desirable operating conditions for a multi-agent system. Multi-agent systems often ex-

hibit an additional structure (i.e. being “weakly acyclic”) that has not been exploited

in the context of no-regret algorithms. In this chapter, we introduce a modification of

the traditional no-regret algorithms by (i) exponentially discounting the memory and

(ii) bringing in a notion of inertia in players’ decision process. We show how these

modifications can lead to an entire class of regret based algorithms that providealmost

sureconvergence to a pure Nash equilibrium in any weakly acyclic game.

4.1 Introduction

The applicability of regret based algorithms for multi-agent learning has been stud-

ied in several papers [Gor05, Bow04, KV05, BP05, GJ03, AMS07]. The appeal of

regret based algorithms is two fold. First of all, regret based algorithms are easily

implementable in large scale multi-agent systems when compared with other learning
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algorithms such as fictitious play [MS96a, JGD01]. Secondly, there is a wide range of

algorithms, called “no-regret” algorithms, that guarantee that the collective behavior

will asymptotically converge to a set of points of no-regret (also referred to as coarse

correlated equilibrium) in any game [You05]. A point of no-regret characterizes a sit-

uation for which the average utility that a player actually received is as high as the

average utility that the player “would have” received had that player used a different

fixed strategy at all previous time steps. No-regret algorithms have been proposed in

a variety of settings ranging from network routing problems [BEL06] to structured

prediction problems [Gor05].

In the more general regret based algorithms, each player makes a decision using

only information regarding the regret for each of his possible actions. If an algorithm

guarantees that a player’s maximum regret asymptotically approaches zero then the al-

gorithm is referred to as a no-regret algorithm. The most common no-regret algorithm

is regret matching [HM00]. In regret matching, at each time step, each player plays a

strategy where the probability of playing an action is proportional to the positive part

of his regret for that action. In a multi-agent system, if all players adhere to a no-regret

learning algorithm, such as regret matching, then the group behavior will converge

asymptotically to a set of points of no-regret [HM00]. Traditionally, a point of no-

regret has been viewed as a desirable or efficient operating condition because each

player’s average utility is as good as the average utility that any other action would

have yielded [KV05]. However, a point of no-regret says little about the performance;

hence knowing that the collective behavior of a multi-agent system will converge to a

set of points of no-regret in general does not guarantee an efficient operation.

There have been attempts to further strengthen the convergence results of no-regret

algorithms for special classes of games. For example, in [JGD01], Jafari et al. showed

through simulations that no-regret algorithms provide convergence to a Nash equilib-
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rium in dominance solvable, constant-sum, and general sum2× 2 games. In [Bow04],

Bowling introduced a gradient based regret algorithm that guarantees that players’

strategies converge to a Nash equilibrium in any 2 player 2 action repeated game.

In [BEL06], Blum et al. analyzed the convergence of no-regret algorithms in routing

games and proved that behavior will approach a Nash equilibrium in various settings.

However, the classes of games considered here cannot fully model a wide variety of

multi-agent systems.

It turns out that weakly acyclic games, which generalize potential games [MS96b],

are closely related to multi-agent systems [MAS07a]. The connection can be seen by

recognizing that in any multi-agent system there is a global objective. Each player

is assigned a local utility function that is appropriately aligned with the global objec-

tive. It is precisely this alignment that connects the realms of multi-agent systems and

weakly acyclic games.

An open question is whether no-regret algorithms converge to a Nash equilibrium

in n-player weakly acyclic games. In this chapter, we introduce a modification of the

traditional no-regret algorithms that (i) exponentially discounts the memory and (ii)

brings in a notion of inertia in players’ decision process. We show how these modifi-

cations can lead to anentire classof regret based algorithms that provide almost sure

convergence to apureNash equilibrium in any weakly acyclic game. It is important

to note that convergence to a Nash equilibrium also implies convergence to a no-regret

point.

In Section 4.2 we discuss the no-regret algorithm, “regret matching,” and illustrate

the performance issues involved with no-regret points in a simple 3 player identical

interest game. In Section 4.3 we introduce a new class of learning dynamics referred

to as regret based dynamics with fading memory and inertia. In Section 4.4 we present

some simulation results. Section 4.5 presents some concluding remarks.
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4.2 Regret Matching

We consider a repeated matrix game withn-player setP := {P1, ...,Pn}, a finite

action setAi for each playerPi ∈ P, and a utility functionUi : A → R for each

playerPi ∈ P, whereA := A1 × · · · × An.

We introduce regret matching, from [HM00], in which players choose their actions

based on theirregret for not choosing particular actions in the past steps.

Define the average regret of playerPi for an actionai ∈ Ai at timet as

Rai
i (t) :=

1

t

t−1∑
τ=0

(Ui(ai, a−i(τ))− Ui(a(τ))) . (4.1)

In other words, playerPi’s average regret forai ∈ Ai would represent the average

improvement in his utility if he had chosenai ∈ Ai in all past steps and all other

players’ actions had remained unaltered.

Each playerPi using regret matching computesRai
i (t) for every actionai ∈ Ai

using the recursion

Rai
i (t) =

t− 1

t
Rai

i (t− 1) +
1

t
(Ui(ai, a−i(t))− Ui(a(t))) .

Note that, at every stept > 0, playerPi updates all entries in his average regret

vectorRi(t) :=
[
Rai

i (t)
]
ai∈Ai

. To update his average regret vector at timet, it is

sufficient for playerPi to observe (in addition to the actual utility received at time

t − 1, Ui(a(t − 1))) his hypothetical utilitiesUi(ai, a−i(t − 1)), for all ai ∈ Ai, that

would have been received if he had chosenai (instead ofai(t−1)) and all other player

actionsa−i(t− 1) had remained unchanged at stept− 1.

In regret matching, once playerPi computes his average regret vector,Ri(t), he

chooses an actionai(t), t > 0, according to the probability distributionpi(t) defined

as

pai
i (t) = Pr [ai(t) = ai] =

[Rai
i (t)]+∑

ãi∈Ai

[
Rãi

i (t)
]+ ,
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for anyai ∈ Ai, provided that the denominator above is positive; otherwise,pi(t) is the

uniform distribution overAi (pi(0) ∈ ∆(Ai) is always arbitrary). Roughly speaking,

a player using regret matching chooses a particular action at any step with probability

proportional to the average regret for not choosing that particular action in the past

steps. If all players use regret matching, the empirical distribution of the joint actions

converge almost surely to the set of coarse correlated equilibria (similar results hold

for different regret based adaptive dynamics); see [HM00, HM01, HM03a]. Note that

this does not mean that the action profilesa(t) will converge, nor does it mean that the

empirical frequencies ofa(t) will converge to a point in∆(A).

4.2.1 Coarse Correlated Equilibria and No-Regret

The set of coarse correlated equilibrium has a strong connection to the notion of regret.

We will restate the definitions of the joint and marginal empirical frequencies orig-

inally defined in Section 3.2. Define the empirical frequency of the joint actions,za(t),

as the percentage of stages at which all players chose the joint action profilea ∈ A up

to timet− 1, i.e.,

za(t) :=
1

t

t−1∑
τ=0

I{a(τ) = a}.

Let z(t) denote the empirical frequency vector formed by the components

{za(t)}a∈A. Note that the dimension ofz(t) is the cardinality of the setA, i.e., |A|,

andz(t) ∈ ∆(A).

Similarly, letza−i

−i (t) be the percentage of stages at which players other then player

Pi have chosen the joint action profilea−i ∈ A−i up to timet− 1, i.e.,

z
a−i

−i (t) :=
1

t

t−1∑
τ=0

I{a−i(τ) = a−i}, (4.2)
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which, givenz(t), can also be expressed as

z
a−i

−i (t) =
∑

ai∈Ai

z(ai,a−i)(t).

Letz−i(t) denote the empirical frequency vector formed by the components{za−i

−i (t)}a−i∈A−i
.

Note that the dimension ofz−i(t) is the cardinality|A−i| andz−i(t) ∈ ∆(A−i).

Given a joint distributionz(t), the expected utility of playerPi is

Ui(z(t)) =
∑
a∈A

Ui(a)z
a(t),

=
1

t

t−1∑
τ=0

Ui(a(τ)),

which is precisely the average utility that playerPi has received up to timet− 1. The

expected utility of playerPi for any actionai ∈ Ai is

Ui(ai, z−i(t)) =
∑

a−i∈A−i

Ui(ai, a−i)z
a−i

−i (t),

=
1

t

t−1∑
τ=0

Ui(ai, a−i(τ)),

which is precisely the average utility that playerPi would have received up to time

t− 1 if playerPi had played actionai all previous time periods provided that the other

players actions remained unchanged. Therefore, the regret of playerPi for action

ai ∈ Ai at timet can be expressed as

Rai
i (t) = Ui(ai, z−i(t))− Ui(z(t)).

If all players use regret matching, then we know that the empirical frequencyz(t)

of the joint actions converges almost surely to the set of coarse correlated equilibria. If

z(t) is a coarse correlated equilibrium, then we know that for any playerPi ∈ P and

any actionai ∈ Ai,

Ui(ai, z−i(t)) ≤ Ui(z(t)) ⇒ Rai
i (t) ≤ 0.
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Therefore, stating that the empirical frequency of the joint actions converge to the set

of coarse correlated equilibria is equivalent to saying that a player’s average regret for

any action will asymptotically vanish.

4.2.2 Illustrative Example

In general, the set of Nash equilibria is a proper subset of the set of coarse correlated

equilibria. Consider for example the following3−player identical interest game char-

acterized by the player utilities shown in Figure 4.1.
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Figure 4.1: A3−player Identical Interest Game.

PlayerP1 chooses a rowU or D, PlayerP2 chooses a columnL or R, PlayerP3

chooses a matrixM1, or M2, or M3. There are two pure Nash equilibria(U,L,M1)

and(D,R,M3) both of which yield maximum utility2 to all players. The set of coarse

correlated equilibria contains these two pure Nash equilibria as the extremum points

of ∆(A) as well as many other probability distributions in∆(A). In particular, the set

of coarse correlated equilibria contains the following{
z ∈ ∆(A) :

∑
a∈A:a3=M2

za = 1, zULM2 = zDRM2 , zURM2 = zDLM2

}
.

Any coarse correlated equilibrium of this form yields an expected utility of 0 to all

players. Clearly, one of the two pure Nash equilibria would be more desirable to all
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players then any other outcome including the above coarse correlated equilibria. How-

ever, the existing results at the time of writing this dissertation such as Theorem 3.1 in

[You05] only guarantee that regret matching will lead players to the set of coarse cor-

related equilibria and not necessarily to a pure Nash equilibrium. While this example

is simplistic in nature, one must believe that situations like this could easily arise in

more general weakly acyclic games.

We should emphasize that regret matching could indeed be convergent to a pure

Nash equilibrium in weakly acyclic games; however, to the best of authors’ knowledge,

no proof for such a statement exists. The existing results characterize the long-term

behavior of regret matching in general games as convergence to the set of coarse cor-

related equilibria, whereas we are interested in proving that the action profiles,a(k),

generated by regret matching will converge to a pure Nash equilibrium when player

utilities constitute a weakly acyclic game, an objective which we will pursue in the

next section.

4.3 Regret Based Dynamics with Fading Memory and Inertia

To enable convergence to a pure Nash equilibrium in weakly acyclic games, we will

modify the conventional regret based dynamics in two ways. First, we will assume

that each player has a fading memory, that is, each player exponentially discounts

the influence of its past regret in the computation of its average regret vector. More

precisely, each player computes a discounted average regret vector according to the

recursion

R̃āi
i (t+ 1) = (1− ρ)R̃āi

i (t) + ρ (Ui(āi, a−i(t))− Ui(a(t))) ,

for all āi ∈ Ai, whereρ ∈ (0, 1] is a parameter with1 − ρ being the discount factor,

andR̃āi
i (1) = 0.
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Second, we will assume that each player chooses an action based on its discounted

average regret using some inertia. Therefore, each playerPi chooses an actionai(t),

at stept > 1, according to the probability distribution

αi(t)RBi(R̃i
(t)) + (1− αi(t))v

ai(t−1),

whereαi(t) is a parameter representing playerPi’s willingness to optimize at time

t, vai(t−1) is the vertex of∆(Ai) corresponding to the actionai(t − 1) chosen by

playerPi at stept − 1, andRBi : R|Ai| → ∆(Ai) is any continuous function (on

{x ∈ R|Ai| : [x]+ 6= 0}) satisfying

x` > 0 ⇔ RB`
i (x) > 0

and (4.3)

[x]+ = 0 ⇒ RB`
i (x) = 1

|Ai| , ∀`,

wherex` andRB`
i (x) are thè -th components ofx andRBi(x) respectively.

We will call the above dynamics regret based dynamics (RB) with fading memory

and inertia. One particular choice for the functionRBi is

RB`
i (x) =

[
x`

]+∑|Ai|
m=1 [xm]+

, (when[x]+ 6= 0) (4.4)

which leads to regret matching with fading memory and inertia. Another particular

choice is

RB`
i (x) =

e
1
τ

x`∑
xm>0 e

1
τ

xm
I{x` > 0}, (when[x]+ 6= 0),

whereτ > 0 is a parameter. Note that, for small values ofτ , playerPi would choose,

with high probability, the action corresponding to the maximum regret. This choice

leads to a stochastic variant of an algorithm called Joint Strategy Fictitious Play with

fading memory and inertia; see Section 3.3. Also, note that, for large values ofτ ,

playerPi would choose any action having positive regret with equal probability.
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According to these rules, playerPi will stay with his previous actionai(t − 1)

with probability 1 − αi(t) regardless of his regret. We make the following standing

assumption on the players’ willingness to optimize.

Assumption 4.3.1.There exist constantsε and ε̄ such that

0 < ε < αi(t) < ε̄ < 1

for all stepst > 1 and for all i ∈ {1, ..., n}.

This assumption implies that players are always willing to optimize with some

nonzero inertia1. A motivation for the use of inertia is to instill a degree of hesitation

into the decision making process to ensure that players do not overreact to various

situations. We will assume that no player is indifferent between distinct strategies2.

Assumption 4.3.2.Player utilities satisfy

Ui(a
1
i , a−i) 6= Ui(a

2
i , a−i),∀ a1

i , a
2
i ∈ Ai, a

1
i 6= a2

i , ∀ a−i ∈ A−i, ∀ i ∈ {1, ..., n}.

The following theorem establishes the convergence of regret based dynamics with

fading memory and inertia to a pure Nash equilibrium.

Theorem 4.3.1. In any weakly acyclic game satisfying Assumption 4.3.2, the action

profilesa(t) generated by regret based dynamics with fading memory and inertia sat-

isfying Assumption 4.3.1 converge to a pure Nash equilibrium almost surely.

We provide a complete proof for the above result in the Appendix of this chapter.

We note that, in contrast to the existing weak convergence results for regret matching

in general games, the above result characterizes the long-term behavior of regret based

dynamics with fading memory and inertia, in a strong sense, albeit in a restricted class

of games. We next numerically verify our theoretical result through some simulations.

1This assumption can be relaxed to holding for sufficiently larget, as opposed to allt.
2One could alternatively assume that all pure Nash equilibrium are strict.
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4.4 Simulations

4.4.1 Three Player Identical Interest Game

We extensively simulated the RB iterations for the game considered in Figure 4.1. We

used theRBi function given in (4.4) with inertia factorα = 0.5 and discount factor

ρ = 0.1. In all cases, player action profilesa(t) converged to one of the pure Nash

equilibria as predicted by our main theoretical result. A typical simulation run shown

in Figure 4.2 illustrates the convergence of RB iterations to the pure Nash equilibrium

(D,R,M3).
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Figure 4.2: Evolution of the actions of players using RB.
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4.4.2 Distributed Traffic Routing

We consider a simple congestion game, as defined in Section 2.3.3, with100 players

seeking to traverse from node A to node B along5 different parallel roads as illustrated

in Figure 4.3. Each player can select any road as a possible route. In terms of conges-

A B

Road 1

Road 2

Road 3

Road 4

Road 5

Figure 4.3: Regret Based Dynamics with Inertia: Congestion Game Example – Network Topol-
ogy

tion games, the set of resources is the set of roads,R, and each player can select one

road, i.e.,Ai = R.

We will assume that each road has a linear cost function with positive (randomly

chosen) coefficients,

cri
(k) = aik + bi, i = 1, ..., 5,

wherek represent the number of vehicles on that particular road. This cost function

may represent the delay incurred by a driver as a function of the number of other drivers

sharing the same road. The actual coefficients or structural form of the cost function

are unimportant as we are just using this example as an opportunity to illustrate the

convergence properties of the proposed regret based algorithms.

We simulated a case where drivers choose their initial routes randomly, and every

day thereafter, adjusted their routes using the regret based dynamics with theRBi

function given in (4.4) with inertia factorα = 0.85 and discount factorρ = 0.1. The
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number of vehicles on each road fluctuates initially and then stabilizes as illustrated in

Figure 4.4. Figure 4.5 illustrates the evolution of the congestion cost on each road. One

can observe that the congestion cost on each road converges approximately to the same

value, which is consistent with a Nash equilibrium with large number of drivers. This

behavior resembles an approximate “Wardrop equilibrium” [War52], which represents

a steady-state situation in which the congestion cost on each road is equal due to the

fact that, as the number of drivers increases, the effect of an individual driver on the

traffic conditions becomes negligible.
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Figure 4.4: Regret Based Dynamics with Inertia: Evolution of Number of Vehicles on Each
Route

We would like to note that the simplistic nature of this example was solely for

illustrative purposes. Regret based dynamics could be employed on any congestion

game with arbitrary network topology and congestion functions. Furthermore, well

known learning algorithms such as fictitious play [MS96a] could not be implemented

even on this very simple congestion game. A driver using fictitious play would need
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Figure 4.5: Regret Based Dynamics with Inertia: Evolution of Congestion Cost on Each Route

to track the empirical frequencies of the choices of the99 other drivers and compute

an expected utility evaluated over a probability space of dimension599.

We would also like to note that in a congestion game, it may be unrealistic to

assume that players are aware of the congestion function on each road. This implies

that each driver is unaware of his own utility function. However, even in this setting,

regret based dynamics can be effectively employed under the condition that each player

can evaluate congestion levels on alternative routes. On the other hand, if a player

is only aware of the congestion experienced, then one would need to examine the

applicability of payoff based algorithms [MYA07] which will be discussed in detail in

the following chapter.
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4.5 Concluding Remarks and Future Work

In this chapter we analyzed the applicability of regret based algorithms on multi-agent

systems. We demonstrated that a point of no-regret may not necessarily be a desirable

operating condition. Furthermore, the existing results on regret based algorithms do

not preclude these inferior operating points. Therefore, we introduced a modification

of the traditional no-regret algorithms that (i) exponentially discounts the memory and

(ii) brings in a notion of inertia in players’ decision process. We showed how these

modifications can lead to an entire class of regret based algorithms that provide con-

vergence to a pure Nash equilibrium in any weakly acyclic game. We believe that

similar results hold for no-regret algorithms without fading memory and inertia but

thus far the proofs have been elusive.

4.6 Appendix to Chapter 4

4.6.1 Proof of Theorem 4.3.1

We will first state and prove a series of claims. The first claim states that if at any time

a player plays an action with positive regret, then the player will play an action with

positive regret at all subsequent time steps.

Claim 4.6.1. Fix anyt0 > 1. Then,

R̃
ai(t0)
i (t0) > 0 ⇒ R̃

ai(t)
i (t) > 0

for all t > t0.

Proof. SupposẽRai(t0)
i (t0) > 0. We have

R̃
ai(t0)
i (t0 + 1) = (1− ρ)R̃

ai(t0)
i (t0) > 0.
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If ai(t0 + 1) = ai(t0), then

R̃
ai(t0+1)
i (t0 + 1) = R̃

ai(t0)
i (t0 + 1) > 0.

If ai(t0 + 1) 6= ai(t0), then

R̃
ai(t0+1)
i (t0 + 1) > 0.

The argument can be repeated to show thatR̃
ai(t)
i (t) > 0, for all t > t0.

Define

Mu := max{Ui(a) : a ∈ A,Pi ∈ P},

mu := min{Ui(a) : a ∈ A,Pi ∈ P},

δ := min{|Ui(a
1)− Ui(a

2)| > 0 :

a1, a2 ∈ A, a1
−i = a2

−i,Pi ∈ P},

N := min{n ∈ {1, 2, ...} :

(1− (1− ρ)n)δ − (1− ρ)n(Mu −mu) > δ/2},

f := min{RBm
i (x) : |x`| ≤Mu −mu,∀`,

xm ≥ δ/2, for onem, ∀Pi ∈ P}.

Note thatδ, f > 0, and|R̃ai
i (t)| ≤Mu −mu, for all Pi ∈ P, ai ∈ Ai, t > 1.

The second claim states a condition describing the absorptive properties of a strict

Nash equilibrium.

Claim 4.6.2. Fix t0 > 1. Assume

1. a(t0) is a strict Nash equilibrium, and

2. R̃ai(t0)
i (t0) > 0 for all Pi ∈ P, and

3. a(t0) = a(t0 + 1) = ... = a(t0 +N − 1).
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Then,a(t) = a(t0), for all t ≥ t0.

Proof. For anyPi ∈ P and anyai ∈ Ai, we have

R̃ai
i (t0 +N) = (1− ρ)N R̃ai

i (t0)

+
(
1− (1− ρ)N

)(
Ui(ai, a−i(t0))

−Ui(ai(t0), a−i(t0))
)
.

Sincea(t0) is a strict Nash equilibrium, for anyPi ∈ P and anyai ∈ Ai, ai 6= ai(t0),

we have

Ui(ai, a−i(t0))− Ui(ai(t0), a−i(t0)) ≤ −δ.

Therefore, for anyPi ∈ P and anyai ∈ Ai, ai 6= ai(t0),

R̃ai
i (t0 +N) ≤ (1− ρ)N(Mu −mu)− (1− (1− ρ)N)δ

< −δ/2 < 0.

We also know that, for allPi ∈ P,

R̃
ai(t0)
i (t0 +N) = (1− ρ)N R̃

ai(t0)
i (t0) > 0.

This proves the claim.

The third claim states an event, and associated probability, where the ensuing joint

action is a better response to the current joint action profile.

Claim 4.6.3. Fix t0 > 1. Assume

1. a(t0) is not a Nash equilibrium, and

2. a(t0) = a(t0 + 1) = ... = a(t0 +N − 1)
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Leta∗ = (a∗i , a−i(t0)) be such that

Ui(a
∗
i , a−i(t0)) > Ui(ai(t0), a−i(t0)),

for somePi ∈ P and somea∗i ∈ Ai. Then,R̃
a∗i
i (t0 +N) > δ/2, anda∗ will be chosen

at stept0 +N with at least probabilityγ := (1− ε)n−1εf .

Proof. We have

R̃
a∗i
i (t0 +N) ≥ −(1− ρ)N(Mu −mu) + (1− (1− ρ)N)δ

> δ/2.

Therefore, the probability of playerPi choosinga∗i at stept0 + N is at leastεf . Be-

cause of players’ inertia, all other players will repeat their actions at stept0 +N with

probability at least(1 − ε)n−1. This means that the action profilea∗ will be chosen at

stept0 +N with probability at least(1− ε)n−1εf .

The fourth claim identifies a particular event, and associated probability, guar-

anteeing that each player will only play actions with positive regret as discussed in

Claim 4.6.1.

Claim 4.6.4. Fix t0 > 1. We haveR̃ai(t)
i (t) > 0 for all t ≥ t0 + 2Nn and for all

Pi ∈ P with probability at least
n∏

i=1

1

|Ai|
γ(1− ε)2Nn.

Proof. Let a0 := a(t0). SupposeR̃
a0

i
i (t0) ≤ 0. Furthermore, suppose thata0 is re-

peatedN consecutive times, i.e.a(t0) = ... = a(t0 +N − 1) = a0, which occurs with

at least probability at least(1− ε)n(N−1).

If there exists aa∗ = (a∗i , a
0
−i) such thatUi(a

∗) > Ui(a
0), then, by Claim 4.6.3,

R̃
a∗i
i (t0 + N) > δ/2 anda∗ will be chosen at stept0 + N with at least probabilityγ.

Conditioned on this, we know from Claim 4.6.1 thatR̃
ai(t)
i (t) > 0 for all t ≥ t0 +N .
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If there does not exist such an actiona∗, thenR̃ai
i (t0 +N) ≤ 0 for all ai ∈ Ai. An

action profile(aw
i , a

0
−i) with Ui(a

w
i , a

0
−i) < Ui(a

0) will be chosen at stept0 +N with at

least probability 1
|Ai|(1−ε)

n−1. If a(t0+N) = (aw
i , a

0
−i), and if furthermore(aw

i , a
0
−i) is

repeatedN consecutive times, i.e.,a(t0 +N) = ... = a(t0 + 2N − 1), which happens

with probability at least(1 − ε)n(N−1), then, by Claim 4.6.3,̃R
a0

i
i (t0 + 2N) > δ/2

and the action profilea0 will be chosen at step(t0 + 2N) with at least probabilityγ.

Conditioned on this, we know from Claim 4.6.1 thatR̃
ai(t)
i (t) > 0 for all t ≥ t0 + 2N .

In summary,R̃ai(t)
i (t) > 0 for all t ≥ t0 + 2N with at least probability

1

|Ai|
γ(1− ε)2Nn.

We can repeat this argument for each player to show thatR̃
ai(t)
i (t) > 0 for all times

t ≥ t0 + 2Nn and for allPi ∈ P with probability at least

n∏
i=1

1

|Ai|
γ(1− ε)2Nn.

FINAL STEP: Establishing convergence to a strict Nash equilibrium:

Proof. Fix t0 > 1. Definet1 := t0 + 2Nn. Let a1, a2, . . . , aL be a finite sequence of

action profiles satisfying the conditions given in Subsection 2.3.4 witha1 := a(t1).

SupposeR̃ai(t)
i (t) > 0 for all t ≥ t1 and for allPi ∈ P, which, by Claim 4.6.4,

occurs with probability at least

n∏
i=1

1

|Ai|
γ(1− ε)2Nn.

Suppose further thata(t1) = ... = a(t1 + N − 1) = a1 which occurs with at least

probability(1−ε)n(N−1). According to Claim 4.6.3 the action profilea2 will be played

at stept2 := t1 + N with at least probabilityγ. Suppose nowa(t2) = ... = a(t2 +
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N − 1) = a2, which occurs with at least probability(1 − ε)n(N−1). According to

Claim 4.6.3, the action profilea3 will be played at stept3 := t2 + N with at least

probabilityγ.

We can repeat the above arguments until we reach the strict Nash equilibriumaL

at steptL (recursively defined as above) and stay ataL for N consecutive steps. From

Claim 2, this would mean that the action profile would stay ataL for all t ≥ tL.

Therefore, givent0 > 1, there exists constants̃ε > 0 andT̃ > 0, both of which are

independent oft0, and a strict Nash equilibriuma∗, such that the following event hap-

pens with at least probabilitỹε: a(t) = a∗ for all t ≥ t0 + T̃ . This proves Theorem 4.1.
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CHAPTER 5

Payoff Based Dynamics for Weakly Acyclic Games

We consider repeated multi-player games in which players repeatedly and simulta-

neously choose strategies from a finite set of available strategies according to some

strategy adjustment process. We focus on the specific class of weakly acyclic games,

which is particularly relevant for multi-agent cooperative control problems. A strat-

egy adjustment process determines how players select their strategies at any stage as

a function of the information gathered over previous stages. Of particular interest

are “payoff based” processes, in which at any stage, players only know their own ac-

tions and (noise corrupted) payoffs from previous stages. In particular, players do not

know the actions taken by other players and do not know the structural form of payoff

functions. We introduce three different payoff based processes for increasingly gen-

eral scenarios and prove that after a sufficiently large number of stages, player actions

constitute a Nash equilibrium at any stage with arbitrarily high probability. We also

show how to modify player utility functions through tolls and incentives in so-called

congestion games, a special class of weakly acyclic games, to guarantee that a central-

ized objective can be realized as a Nash equilibrium. We illustrate the methods with a

simulation of distributed routing over a network.
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5.1 Introduction

The objective in distributed cooperative control for multi-agent systems is to enable

a collection of “self-interested” agents to achieve a desirable “collective” objective.

There are two overriding challenges to achieving this objective. The first is complexity:

finding an optimal solution by a centralized algorithm may be prohibitively difficult

when there are large numbers of interacting agents. This motivates the use of adaptive

methods that enable agents to “self organize” into suitable, if not optimal, collective

solutions.

The second challenge is limited information. Agents may have limited knowledge

about the status of other agents, except perhaps for a small subset of “neighboring”

agents. An example is collective motion control for mobile sensor platforms (e.g.,

[GSM05]). In these problems, mobile sensors seek to position themselves to achieve

various collective objectives such as rendezvous or area coverage. Sensors can com-

municate with neighboring sensors, but otherwise do not have global knowledge of the

domain of operation or the status and locations of non-neighboring sensors.

A typical assumption is that agents are endowed with a reward or utility function

that depends on their own strategies and the strategies of other agents. In motion

coordination problems, for example, an agent’s utility function typically depends on

its position relative to other agents or environmental targets, and knowledge of this

function guides local motion adjustments.

In other situations, agents may know nothing about the structure of their utility

functions, and how their own utility depends on the actions of other agents (whether lo-

cal or far away). In this case the only thing they can do is observe rewards based on ex-

perience and “optimize” on a trial and error basis. The situation is further complicated

because all agents are trying simultaneously to optimize their own strategies. There-
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fore, even in the absence of noise, an agent trying the same strategy twice may see

different results because of the non-stationary nature of the strategies of other agents.

There are several examples of multi-agent systems that illustrate this situation. In

distributed routing for ad hoc data networks (e.g., [BK03]), routing nodes seek to route

packets to neighboring nodes based on packet destinations without knowledge of the

overall network structure. The objective is to minimize the delay of packets to their

destinations. This delay must be realized through trial and error, since the functional

dependence of delay on routing strategies is not known. A similar problem is automo-

tive traffic routing, in which drives seek to minimize the congestion experienced to get

to a desired destination. Drivers can experience the congestion on selected routes as a

function of the routes selected by other drivers, but drivers do not know the structure of

the congestion function. Finally, in a multi-agent approach to designing manufacturing

systems (e.g., [Ger94]), it may not be known in advance how performance measures

(such as throughput) depend on manufacturing policy. Rather performance can only

be measured once a policy is implemented.

Our interest in this chapter is to develop algorithms that enable coordination in

multi-agent systems for precisely this “payoff based” scenario, in which agents only

have access to (possibly noisy) measurements of the rewards received through repeated

interactions with other agents. We adopt the framework of “learning in games” (see

[FL98, Har05, You98, You05] for an extensive overview). Unlike most of the learning

rules in this literature, which assume that agents adjust their behavior based on the

observed behavior of other agents, we shall assume that agents know only their own

past actions and the payoffs that resulted. It is far from obvious that Nash equilibrium

can be achieved under such a restriction, but in fact it has recently been shown that such

“payoff based” learning rules can be constructed that work in any game [FY06, GL].

In this chapter we show that there are simpler and more intuitive adjustment rules
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that achieve this objective for a large class of multi-player games known as “weakly

acyclic” games. This class captures many problems of interest in cooperative control

[MAS07a, MAS07b]. It includes the very special case of “identical interest” games,

where each agent receives the same reward. However, weakly acyclic games (and the

related concept of potential games) capture other scenarios such as congestion games

[Ros73] and similar problems such as distributed routing in networks, weapon tar-

get assignment, consensus, and area coverage. See [MAS05, AMS07] and referenced

therein for a discussion of a learning in games approach to cooperative control prob-

lems, but under less stringent assumptions on informational constraints considered in

this chapter.

For many multi-agent problems, operation at a pure Nash equilibrium may reflect

optimization of a collective objective.1 We will derive payoff based dynamics that

guarantee asymptotically that agent strategies will constitute a pure Nash equilibrium

with arbitrarily high probability. It need not always be the case that at least one Nash

equilibrium optimizes a collective objective. Motivated by this consideration, we also

discuss the introduction of incentives or tolls in a player’s payoff function to assure

that there is at least one Nash equilibrium that optimizes a collective objective. Even

in this case, however, there may still be suboptimal Nash equilibria.

The remainder of this chapter is organized as follows. Section 5.2 introduces three

types of payoff based dynamics in for increasingly general problems. Section 5.2.1

presents “Safe Experimentation Dynamics” which is restricted to identical interest

games. Section 5.2.2 presents “Simple Experimentation Dynamics” for the more gen-

eral class of weakly acyclic games but with noise free payoff measurements. Sec-

tion 5.2.3 presents “Sample Experimentation Dynamics” for weakly acyclic games

with noisy payoff measurements. Section 5.3 discusses how to introduce tolls and

1Nonetheless, there are varied viewpoints on the role of Nash equilibrium as a solution concept for
multi-agent systems. See [SPG07] and [MS07].
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incentives in payoffs so that a Nash equilibrium optimizes a collective objective. Sec-

tion 5.4 presents an illustrative example of a traffic congestion game. Finally, Sec-

tion 5.5 contains some concluding remarks. An important analytical tool throughout is

the method of resistance trees for perturbed Markov chains [You93], which is reviewed

in the appendix of this chapter.

5.2 Payoff Based Learning Algorithms

In this section, we will introduce three simple payoff based learning algorithms. The

first, calledSafe Experimentation, guarantees convergence to a pure optimal Nash

equilibrium in any identical interest game. Such an equilibrium is optimal because

each player’s utility is maximized. The second learning algorithm, calledSimple

Experimentation, guarantees convergence to a pure Nash equilibrium in any weakly

acyclic game. The third learning algorithm, calledSample Experimentation, guaran-

tees convergence to a pure Nash equilibrium in any weakly acyclic game even when

utility measurements are corrupted with noise.

For each learning algorithm, we consider a repeated strategic form game, as de-

scribed in Section 2.4, withn-player setP := {P1, ...,Pn}, a finite action setAi for

each playerPi ∈ P, and a utility functionUi : A → R for each playerPi ∈ P, where

A := A1 × · · · × An.

5.2.1 Safe Experimentation Dynamics for Identical Interest Games

5.2.1.1 Constant Exploration Rates

Before introducing the learning dynamics, we introduce the following function. Let

Umax
i (t) := max

0≤τ≤t−1
Ui(a(τ))
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be the maximum utility that playerPi has received up to timet− 1.

We will now introduce the Safe Experimentation dynamics for identical interest

games; see Section 2.3.1 for a review of identical interest games.

1. Initialization: At time t = 0, each player randomly selects and plays any action,

ai(0). This action will be initially set as the player’sbaseline actionat timet = 1

and is denoted byab
i(1) = ai(0).

2. Action Selection:At each subsequent time step, each player selects his baseline

action with probability(1 − ε) or experiments with a new random action with

probabilityε, i.e.:

• ai(t) = ab
i(t) with probability(1− ε)

• ai(t) is chosen randomly (uniformly) overai with probabilityε

The variableε will be referred to as the player’sexploration rate.

3. Baseline Strategy Update:Each player compares the actual utility received,

Ui(a(t)), with the maximum received utilityUmax
i (t) and updates his baseline

action as follows:

ab
i(t+ 1) =


ai(t), Ui(a(t)) > Umax

i (t);

ab
i(t), Ui(a(t)) ≤ Umax

i (t).

This step is performed whether or not Step 2 involved exploration.

4. Return to Step 2 and repeat.

The reason that this learning algorithm is called “Safe” Experimentation is that

the utility evaluated at the baseline action,U(ab(t)), is non-decreasing with respect to

time.
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Theorem 5.2.1.LetG be a finiten-player identical interest game in which all players

use the Safe Experimentation dynamics. Given any probabilityp < 1, if the exploration

rate ε > 0 is sufficiently small, then for all sufficiently large timest, a(t) is an optimal

Nash equilibrium ofG with at least probabilityp.

Proof. SinceG is an identical interest game, let the utility of each player be expressed

asU : A → R and letA∗ be the set of “optimal” Nash equilibrium ofG, i.e.,

A∗ = {a∗ ∈ A : U(a∗) = max
a∈A

U(a)}.

For any joint action,a(t), the ensuing joint action will constitute an optimal Nash

equilibrium with at least probability(
ε

|A1|

)(
ε

|A2|

)
· · ·

(
ε

|An|

)
,

where|Ai| denotes the cardinality of the action set of playerPi. Therefore, an optimal

Nash equilibrium will eventually be played with probability 1 for anyε > 0.

Suppose an optimal Nash equilibrium is first played at timet∗, i.e.,a(t∗) ∈ A∗ and

a(t∗ − 1) /∈ A∗. Then the baseline joint action must remain constant from that time

onwards, i.e.,ab(t) = a(t∗) for all t > t∗. An optimal Nash equilibrium will then be

played at any timet > t∗ with at least probability(1− ε)n. Sinceε > 0 can be chosen

arbitrarily small, and in particular such that(1− ε)n > p this completes the proof.

5.2.1.2 Diminishing Exploration Rates

In the Safe Experimentation dynamics, the exploration rateεwas defined as a constant.

Alternatively, one could let the exploration rate vary to induce desirable behavior. One

example would be to let the exploration rate decay, such asεt = (1/t)1/n. This would

induce exploration at early stages and reduce exploration at later stages of the game.
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The theorem and proof hold under the following conditions for the exploration rate:

lim
t→∞

εt = 0,

lim
t→∞

t∏
τ=1

[
1−

(
ετ
|A1|

)(
ετ
|A2|

)
· · ·

(
ετ
|An|

)]
= 0.

5.2.2 Simple Experimentation Dynamics for Weakly Acyclic Games

We will now introduce the Simple Experimentation dynamics for weakly acyclic games;

see Section 2.3.4 for a review of weakly acyclic games. These dynamics will allow us

to relax the assumption of identical interest games.

1. Initialization: At time t = 0, each player randomly selects and plays any action,

ai(0). This action will be initially set as the player’sbaseline actionat time 1,

i.e.,ab
i(1) = ai(0). Likewise, the player’sbaseline utilityat time 1 is initialized

asub
i(1) = Ui(a(0)).

2. Action Selection:At each subsequent time step, each player selects his baseline

action with probability(1 − ε) or experiments with a new random action with

probabilityε.

• ai(t) = ab
i(t) with probability(1− ε)

• ai(t) is chosen randomly (uniformly) overai with probabilityε

The variableε will be referred to as the player’sexploration rate. Whenever

ai(t) 6= ab
i(t), we will say that playerPi experimented.

3. Baseline Action and Baseline Utility Update:Each player compares the utility

received,Ui(a(t)), with his baseline utility,ub
i(t), and updates his baseline action

and utility as follows:

• If playerPi experimented(i.e.,ai(t) 6= ab
i(t)) and ifUi(a(t)) > ub

i(t) then
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ab
i(t+ 1) = ai(t),

ub
i(t+ 1) = Ui(a(t)).

• If playerPi experimentedand ifUi(a(t)) ≤ ub
i(t) then

ab
i(t+ 1) = ab

i(t),

ub
i(t+ 1) = ub

i(t).

• If playerPi did not experiment(i.e.,ai(t) = ab
i(t)) then

ab
i(t+ 1) = ab

i(t),

ub
i(t+ 1) = Ui(a(t)).

4. Return to Step 2 and repeat.

As before, these dynamics require only utility measurements, and hence almost no

information regarding the structure of the game.

Theorem 5.2.2.LetG be a finiten-player weakly acyclic game in which all players

use the Simple Experimentation dynamics. Given any probabilityp < 1, if the explo-

ration rate ε > 0 is sufficiently small, then for all sufficiently large timest, a(t) is a

Nash equilibrium ofG with at least probabilityp.

The remainder of this subsection is devoted to the proof of Theorem 5.2.2. The

proof rely on the theory of resistance trees for perturbed Markov chains (see the ap-

pendix of this chapter for a brief review).

Define thestateof the dynamics to be the pair[a, u], wherea is the baseline joint

action andu is the baseline utility vector. We will omit the superscriptb to avoid

cumbersome notation.

Partition the state space into the following three sets. First, letX be the set of states

[a, u] such thatui 6= Ui(a) for at least one playerPi. LetE be the set of states[a, u]

such thatui = Ui(a) for all playersPi anda is a Nash equilibrium. LetD be the set
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of states[a, u] such thatui = Ui(a) for all playersPi anda is a disequilibrium (not a

Nash equilibrium). These are all the states.

Claim 5.2.1. a. Any state[a, u] ∈ X transitions to a state inE ∪D in one period

with probabilityO(1).

b. Any state[a, u] ∈ E ∪ D transitions to a different state[a′, u′] with probability

at mostO(ε).

Proof. For any[a, u′] ∈ X, there exists at least one playerPi such thatu′i 6= Ui(a). If

all players repeat their part of the joint action profilea which occurs with probability

(1 − ε)n, then[a, u′] transitions to[a, u], whereui = Ui(a) for all playersPi. Thus

the process moves to[a, u] ∈ E ∪ D with probO(1). This proves statement (a). As

for statement (b), any state inE ∪ D transitions back to itself whenever no player

experiments, which occurs with probability at leastO(1).

Claim 5.2.2. For any state[a, u] ∈ D, there is a finite sequence of transitions to a

state[a∗, u∗] ∈ E, where the transitions have the form2:

[a, u] →
O(ε)

[a1, u1] →
O(ε)

... →
O(ε)

[a∗, u∗]

whereuk
i = Ui(a

k) for all i and for allk > 0, and each transition occurs with proba-

bility O(ε).

Proof. Such a sequence is guaranteed by weak acyclicity. Sincea is not an equilib-

rium, there is a better reply path froma to some equilibriuma∗, saya, a1, a2, ..., a∗.

At [a, u] the appropriate playerPi experiments with probabilityε, chooses the ap-

propriate better reply with probability1/|Ai|, and no one else experiments. Thus the

process moves to[a1, u1] whereu1
i = Ui(a

1) for all playersPi with probabilityO(ε).

2We will use the notationz → z′ to denote the transition from statez to statez′. We usez →
O(ε)

z′ to

emphasize that this transition occurs with probability of orderε.
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Notice that for the deviatorPi, Ui(a
1) > Ui(a), thereforeu1

i = Ui(a
1). For the non-

deviator, say playerPj, u1
j = Uj(a

1) sincea1
j = aj. Thus[a1, u1] ∈ D∪E. In the next

period, the appropriate player deviates and so forth.

Claim 5.2.3. For any equilibrium[a∗, u∗] ∈ E, any path from[a∗, u∗] to another state

[a, u] ∈ E ∪ D, a 6= a∗, that does not loop back to[a∗, u∗] must be of one of the

following two forms:

1. [a∗, u∗] →
O(ε)

[a∗, u′] →
O(εk)

[a′, u′′] → ...→ [a, u], wherek ≥ 2;

2. [a∗, u∗] →
O(εk)

[a′, u′′] → ...→ [a, u], wherek ≥ 2.

Proof. The path must begin by either one player experimenting or more that one player

experimenting. Case (2) results if more than one player experiments. Case (1) results

if exactly one agent, say agentPi, experiments with an actiona′i 6= a∗i and all other

players continue to play their part ofa∗. This happens with probabilityε
|Ai|(1− ε)n−1.

In this situation, playerPi cannot be better off, meaning thatUi(a
′
i, a

∗
−i) ≤ Ui(a

∗),

since by assumptiona∗ is an equilibrium. Hence the baseline action next period re-

mainsa∗ for all players, though their baseline utilities may change. Denote the next

state by[a∗, u′]. If in the subsequent period all players continue to play their part of

the actiona∗ again, which occurs with probability(1− ε)n, then the state reverts back

to [a∗, u∗] and we have a loop. Hence the only way the path can continue without a

loop is for one or more players to experiment in the next stage, which has probability

O(εk), k ≥ 1. This is exactly what case (1) alleges.

Proof of Theorem 5.2.2.This is a finite aperiodic Markov process on the state space

A × Ū , whereŪ denotes the finite set of baseline utility vectors. Furthermore, from
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every state there exists a positive probability path to a Nash equilibrium. Hence, every

recurrent class has at least one Nash equilibrium. We will now show that within any

recurrent class, the trees (see the appendix of this chapter) rooted at the Nash equi-

librium will have the lowest resistance. Therefore, according to Theorem 5.6.1, the

a priori probability that the state will be a Nash equilibrium can be made arbitrarily

close to 1.

In order to apply Theorem 5.6.1, we will construct minimum resistance trees with

vertices consisting of every possible state (within a recurrence class). Each edge will

have resistance0, 1, 2, ... associated with the transition probabilities

O(1), O(ε), O(ε2), ..., respectively.

Our analysis will deviate slightly from the presentation in the appendix. In the dis-

cussion in the appendix, the vertices of minimum resistance trees are recurrence classes

of an associated unperturbed Markov chain. In this case, the unperturbed Markov chain

corresponds to Simple Experimentation dynamics withε = 0, and so the recurrence

classes are all states inE ∪D. Nonetheless, we will construct resistance trees with the

vertices being all possible states, i.e.,E∪D∪X. The resulting conclusions remain the

same. Since the states inX are transient with probabilityO(1), the resistance to leave

a node corresponding to a state inX is zero. Therefore, the presence of such states

does not affect the conclusions determining which states are stochastically stable.

Suppose a minimum resistance treeT is rooted at a vertexv that is not inE.

If v ∈ X, it is easy to construct a new tree that has lower resistance. Namely, by

Claim 5.2.1a, there is a 0-resistance one-hop pathP from v to some state[a, u] ∈

E ∪ D. Add the edge ofP to T and subtract the edge inT that exits from the vertex

[a, u]. This results in a[a, u]-treeT ′. It has lower resistance thanT because the added

edge has zero resistance while the subtracted edge has resistance greater than or equal

to 1 because of Claim 5.2.1b. This argument is illustrated in Figure 5.1, where the red
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edge of strictly positive resistance is removed and replaced with the blue edge of zero

resistance.

[a, u'']

[a, u'] [a, u]

[a', u][a', u']

[a, u'']

[a, u'] [a, u]

[a', u][a', u']

R > 1

R = 0

Original Tree T (Rooted in X) Revised Tree T' (Rooted in D or E)

Figure 5.1: Construction of alternative to tree rooted inX.

Suppose next thatv = [a, u] ∈ D but not inE. Construct a pathP as in Claim 5.2.2

from [a, u] to some state[a∗, u∗] ∈ E. As above, construct a new treeT ′ rooted at

[a∗, u∗] by adding the edges ofP to T and taking out the redundant edges (the edges

in T that exit from the vertices inP ). The nature of the pathP guarantees that the

edges taken out have total resistance at least as high as the resistances of the edges put

in. This is because the entire pathP lies in E ∪ D, each transition on the path has

resistance1, and, from Claim 5.2.2b, the resistance to leave any state inE ∪ D is at

least 1.

To construct a new tree that has strictly lower resistance, we will inspect the effect

of removing the exiting edge from[a∗, u∗] in T . Note that this edge must fit either case

(1) or case (2) of Claim 5.2.3.

In case (2), the resistance of the exiting edge is at least2, which is larger than

any edge inP . Hence the new tree has strictly lower resistance thanT , which is a

contradiction. This argument is illustrated in Figure 5.2. A new path is created from

the original root[a, u] ∈ D to the equilibrium[a∗, u∗] ∈ E (blue edges). Redundant
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(red) edges emanating from the new path are removed. In case (2), the redundant edge

emanating from[a∗, u∗] has a resistance of at least2.

[a', u'']

[a, u]

[a*, u*]

[a', u']

[a*, u'][a'', u'']

[a, u']

[a, u'']

[a', u'']

[a, u]

[a*, u*]

[a', u']

[a*, u'][a'', u'']

[a, u']

[a, u'']

R = 1

R = 1

R = 1

R > 1

R > 1

R > 2

Original Tree T (Rooted in D - Case 2) Revised Tree T' (Rooted in E)

Figure 5.2: Construction of alternative to tree rooted inD for Case (2).

In case (1), the exiting edge has the form[a∗, u∗] → [a∗, u′] which has resistance 1

whereu∗ 6= u′. The next edge inT , say[a∗, u′] → [a′, u′′], also has at least resistance

1. Remove the edge[a∗, u′] → [a′, u′′] from T , and put in the edge[a∗, u′] → [a∗, u∗].

The latter has resistance 0 since[a∗, u′] ∈ X. This results in a treeT ′′ that is rooted

at [a∗, u∗] and has strictly lower resistance than doesT , which is a contradiction. This

argument is illustrated in Figure 5.3. As in Figure 5.2, a new (blue) path is constructed

and redundant (red) edges are removed. The difference is that the edge[a∗, u′] →

[a′, u′′] is removed and replaced with[a∗, u′] → [a∗, u∗].

To recap, a minimum resistant tree cannot be rooted at any state inX or D, and

therefore can only be rooted inE. Therefore, whenε is sufficiently small, the long-run

probability onE can be made arbitrarily close to 1, and in particular larger than any

specified probabilityp.
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[a', u'']

[a, u]

[a*, u*]

[a', u']

[a*, u'][a'', u'']

[a, u']

[a, u'']

[a', u'']

[a, u]

[a*, u*]

[a', u']

[a*, u'][a'', u'']

[a, u']

[a, u'']

R = 0

R = 1

R = 1

R = 1

R = 1

R > 1
R > 1

R > 1

Original Tree T (Rooted in D - Case 1) Revised Tree T' (Rooted in E)

Figure 5.3: Construction of alternative to tree rooted inD for Case (1).

5.2.3 Sample Experimentation Dynamics for Weakly Acyclic Games with Noisy

Utility Measurements

5.2.3.1 Noise-free Utility Measurements

In this section we will focus on developing payoff based dynamics for which the limit-

ing behavior exhibits that of a pure Nash equilibrium with arbitrarily high probability

in any finite weakly acyclic gameeven in the presence of utility noise. We will show

that a variant of the so-called Regret Testing algorithm [FY06] accomplishes this ob-

jective for weakly acyclic games with noisy utility measurements.

We now introduce Sample Experimentation dynamics.

1. Initialization: At time t = 0, each player randomly selects and plays any action,

ai(0) ∈ Ai. This action will be initially set as the player’sbaseline action,

ab
i(1) = ai(0).

2. Exploration Phase: After the baseline action is set, each player engages in an
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exploration phaseover the nextm periods. The length of the exploration phase

need not be the same or synchronized for each player, but we will assume that

they are for the proof. For convenience, we will double index the time of the

actions played as

ǎ(t1, t2) = a(m t1 + t2)

wheret1 indexes the number of the exploration phase andt2 indexes the actions

played in that exploration phase. We will refer tot1 as theexploration phase

time and t2 as theexploration action time. By construction, the exploration

phase time and exploration action time satisfyt1 ≥ 1 andm ≥ t2 ≥ 1. The

baseline action will only be updated at the end of the exploration phase and will

therefore only be indexed by the exploration phase time.

During the exploration phase, each player selects his baseline action with prob-

ability (1− ε) or experiments with a new random action with probabilityε. That

is, for any exploration phase timet1 ≥ 1 and for any exploration action time

satisfyingm ≥ t2 ≥ 1,

• ǎi(t1, t2) = ab
i(t1) with probability(1− ε),

• ǎi(t1, t2) is chosen randomly (uniformly) over(Ai\ab
i(t1)) with probability

ε.

Again, the variableε will be referred to as the player’sexploration rate.

3. Action Assessment:After the exploration phase, each player evaluates the av-

erage utility received when playing each of his actions during the exploration

phase. Letnai
i (t1) be the number of times that playerPi played actionai dur-

ing the exploration phase at timet1. The average utility for actionai during the
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exploration phase at timet1 is

V̂ ai
i (t1) =


1

n
ai
i (t1)

∑m
t2=1 I{ai = ǎi(t1, t2)}Ui(ǎ(t1, t2)), nai

i (t1) > 0;

Umin, nai
i (t1) = 0,

whereI{·} is the usual indicator function andUmin satisfies

Umin < min
i

min
a∈A

Ui(a).

In words,Umin is less than the smallest payoff any agent can receive.

4. Evaluation of Better Response Set:Each player compares the average utility

received when playing his baseline action,V̂
ab

i (t)
i (t1), with the average utility

received for each of his other actions,V̂ ai
i (t1), and finds all played actions which

performedδ better than the baseline action. The termδ will be referred to as the

players’tolerance level. DefineA∗
i (t1) to be the set of actions that outperformed

the baseline action as follows:

A∗
i (t1) :=

{
ai ∈ Ai : V̂ ai

i (t1) ≥ V̂
ab

i (t1)
i (t1) + δ

}
. (5.1)

5. Baseline Strategy Update:Each player updates his baseline action as follows:

• If A∗
i (t1) = ∅, thenab

i(t1 + 1) = ab
i(t1).

• If A∗
i (t1) 6= ∅, then

– With probabilityω, setab
i(t1 + 1) = ab

i(t1). (We will refer toω as the

player’s inertia.)

– With probability 1 − ω, randomly selectab
i(t1 + 1) ∈ A∗

i (t1) with

uniform probability.

6. Return to Step 2 and repeat.
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For simplicity, we will first state and prove the desired convergence properties

using noiseless utility measurements. The setup for the noisy utility measurements

will be stated afterwards.

Before stating the following theorem, we define the constantα > 0 as follows.

If Ui(a
1) 6= Ui(a

2) for any joint actionsa1, a2 ∈ A and any playerPi ∈ P, then

|Ui(a
1)− Ui(a

2)| > α. In words, if any two joint actions result in different utilities at

all, then the difference would be at leastα.

Theorem 5.2.3.LetG be a finiten-player weakly acyclic game in which all players

use the Sample Experimentation dynamics. For any

• probabilityp < 1,

• tolerance levelδ ∈ (0, α),

• inertia ω ∈ (0, 1), and

• exploration rateε satisfyingmin{(α− δ)/4, δ/4, 1− p} > (1− (1− ε)n) > 0,

if the exploration phase lengthm is sufficiently large, then for all sufficiently large

timest > 0, a(t) is a Nash equilibrium ofG with at least probabilityp.

The remainder of this subsection is devoted to the proof of Theorem 5.2.3.

We will assume for simplicity that utilities are between -1/2 and 1/2, i.e.,|Ui(a)| ≤

1/2 for any playerPi ∈ P and any joint actiona ∈ A.

We begin with a series of useful claims. The first claim states that for any player

Pi the average utility for an actionai ∈ Ai during the exploration phase can be made

arbitrarily close (with high probability) to the actual utility the player would have re-

ceived provided that all other players never experimented. This can be accomplished
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if the experimentation rate is sufficiently small and the exploration phase length is

sufficiently large.

Claim 5.2.4. Letab be the joint baseline action at the start of an exploration phase of

lengthm. For

• any probabilityp < 1,

• anyδ∗ > 0, and

• any exploration rateε > 0 satisfyingδ∗/2 ≥ (1− (1− ε)n−1) > 0,

if the exploration phase lengthm is sufficiently large then

Pr
[∣∣V̂ ai

i − Ui(ai, a
b
−i)

∣∣ > δ∗
]
< 1− p.

Proof. Let ni(ai) represent the number of times playerPi played actionai during the

exploration phase. In the following discussion,all probabilities and expectations are

conditioned onni(ai) > 0. We omit making this explicit for the sake of notational

simplicity. The eventni(ai) = 0 has diminishing probability as the exploration phase

lengthm increases, and so this case will not affect the desired conclusions for increas-

ing phase lengths.

For an arbitraryδ∗ > 0,

Pr
[∣∣V̂ ai

i − Ui(ai, a
b
−i)

∣∣ > δ∗
]

≤ Pr
[∣∣V̂ ai

i − E{V̂ ai
i }

∣∣ +
∣∣E{V̂ ai

i } − Ui(ai, a
b
−i)

∣∣ > δ∗
]

≤ Pr
[∣∣V̂ ai

i − E{V̂ ai
i }

∣∣ > δ∗/2
]

︸ ︷︷ ︸
(∗)

+Pr
[∣∣E{V̂ ai

i } − Ui(ai, a
b
−i)

∣∣ > δ∗/2
]

︸ ︷︷ ︸
(∗∗)

.

First, let us focus on(∗∗). We have

E{V̂ ai
i } − Ui(ai, a

b
−i) = [1− (1− ε)n−1]

[
E{Ui(ai, a−i(t))|a−i(t) 6= ab

−i} − Ui(ai, a
b)

]
,
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which approaches0 asε ↓ 0. Therefore, for any exploration rateε satisfyingδ∗/2 >

(1− (1− ε)n−1) > 0, we know that

Pr
[∣∣E{V̂ ai

i } − Ui(ai, a
b
−i)

∣∣ > δ∗/2
]

= 0.

Now we will focus on(∗). By the weak law of large numbers,(∗) approaches0 as

ni(ai) ↑ ∞. This implies that for any probabilitȳp < 1 and any exploration rateε > 0,

there exists a sample sizen∗i (ai) such that ifni(ai) > n∗i (ai) then

Pr
[∣∣V̂ ai

i − E{V̂ ai
i }

∣∣ > ρ/2
]
< 1− p̄.

Lastly, for any probabilitȳp < 1 and any fixed exploration rate, there exists a minimum

exploration lengthm > 0 such that for any exploration lengthm > m,

Pr [ni(ai) ≥ n∗i (ai)] ≥ p̄.

In summary, for any fixed exploration rateε satisfyingδ∗/2 ≥ (1 − (1 − ε)n−1) > 0,

(∗) + (∗∗) can be made arbitrarily close to0, provided that the exploration lengthm is

sufficiently large.

Claim 5.2.5. Letab be the joint baseline action at the start of an exploration phase of

lengthm. For any

• probabilityp < 1,

• tolerance levelδ ∈ (0, α), and

• exploration rateε > 0 satisfyingmin{(α− δ)/4, δ/4} ≥ (1− (1− ε)n−1) > 0,

if the exploration lengthm is sufficiently large, then each player’s better response set

a∗i will contain only and all actions that are a better response to the joint baseline

action, i.e.,

a∗i ∈ A∗
i ⇔ Ui(a

∗
i , a

b
−i) > Ui(a

b)

with at least probabilityp.
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Proof. Supposeab is not a Nash equilibrium. For some playerPi ∈ P, let a∗i be a

strict better reply to the baseline joint action, i.e.Ui(a
∗
i , a

b
−i) > Ui(a

b) and letaw
i be a

non-better reply to the baseline joint action, i.e.Ui(a
w
i , a

b
−i) ≤ Ui(a

b).

Using Claim 5.2.4, for any probabilitȳp < 1 and any exploration rateε > 0

satisfyingmin{(α − δ)/4, δ/4} ≥ (1 − (1 − ε)n−1) > 0 there exists a minimum

exploration lengthm > 0 such that for any exploration lengthm > m the following

expressions are true:

Pr
[
|V̂ ab

i
i − Ui(a

b
i , a

b
−i)| < δ∗

]
≥ p̄, (5.2)

Pr
[
|V̂ a∗i

i − Ui(a
∗
i , a

b
−i)| < δ∗

]
≥ p̄, (5.3)

Pr
[
|V̂ aw

i
i − Ui(a

w
i , a

b
−i)| < δ∗

]
≥ p̄, (5.4)

whereδ∗ = min{(α− δ)/2, δ/2}. Rewriting equation 5.2 we obtain

Pr
[
|V̂ ab

i
i − Ui(a

b
i , a

b
−i)| < δ∗

]
≤ Pr

[
V̂

ab
i

i − Ui(a
b
i , a

b
−i) < (α− δ)/2

]
,

and rewriting equation 5.3 we obtain

Pr
[
|V̂ a∗i

i − Ui(a
∗
i , a

b
−i)| < δ∗

]
≤ Pr

[
V̂

a∗i
i − Ui(a

∗
i , a

b
−i) > −(α− δ)/2

]
,

≤ Pr
[
V̂

a∗i
i − (Ui(a

b
i , a

b
−i) + α) > −(α− δ)/2

]
,

= Pr
[
V̂

a∗i
i − Ui(a

b
i , a

b
−i) > (α+ δ)/2

]
,

meaning that

Pr [a∗i ∈ A∗
i ] ≥ p̄2.

Similarly, rewriting equation 5.2 we obtain

Pr
[
|V̂ ab

i
i − Ui(a

b
i , a

b
−i)| < δ∗

]
≤ Pr

[
V̂

ab
i

i − Ui(a
b
i , a

b
−i) > −δ/2

]
,

and rewriting equation 5.4 we obtain

Pr
[
|V̂ aw

i
i − Ui(a

w
i , a

b
−i)| < δ∗

]
≤ Pr

[
V̂

aw
i

i − Ui(a
w
i , a

b
−i) < δ/2

]
,

≤ Pr
[
V̂

aw
i

i − Ui(a
b
i , a

b
−i) < δ/2

]
,
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meaning that

Pr [aw
i /∈ A∗

i ] ≥ p̄2.

Sincep̄ can be chosen arbitrarily close to 1, the proof is complete.

Theorem 5.2.3.The evolution of the baseline actions from phase to phase is a finite

aperiodic Markov process on the state space of joint actions,A. Furthermore, sinceG

is weakly acyclic, from every state there exists a better reply path to a Nash equilib-

rium. Hence, every recurrent class has at least one Nash equilibrium. We will show that

these dynamics can be viewed as a perturbation of a certain a Markov chain whose re-

current classes are restricted to Nash equilibria. We will then appeal to Theorem 5.6.1

to derive the desired result.

We begin by defining an “unperturbed” process on baseline actions. For anyab ∈

A, define thetruebetter reply set as

Ā∗
i (a

b) :=
{
ai : Ui(ai, a

b
−i) > Ui(a

b)
}
.

Now define the transition process fromab(t1) to ab(t1 + 1) as follows:

• If Ā∗
i (a

b(t1)) = ∅, thenab
i(t1 + 1) = ab

i(t1).

• If Ā∗
i (a

b(t1)) 6= ∅, then

– With probabilityω, setab
i(t1 + 1) = ab

i(t1).

– With probability1− ω, randomly selectab
i(t1 + 1) ∈ Ā∗

i (t1) with uniform

probability.

This is a special case of a so-called “better reply process with finite memory and iner-

tia”. From [You05, Theorem 6.2], the joint actions of this process converge to a Nash

equilibrium with probability 1 in any weakly acyclic game. Therefore, the recurrence

classes of this unperturbed are precisely the set of pure Nash equilibria.

96



The above unperturbed process closely resembles the Baseline Strategy Update

process described in Step 5 of Sample Experimentation Dynamics. The difference

is that the above process uses the true better reply set, whereas Step 5 uses a better

reply set constructed from experimentation over a phase. However, by Claim 5.2.5, for

any probabilityp̄ < 1, acceptable tolerance levelδ, and acceptable exploration rateε,

there exists a minimum exploration phase lengthm such that for any exploration phase

lengthm > m, each player’s better response set will contain only and all actions that

are a strict better response with at least probabilityp̄.

With parameters selected according to Claim 5.2.5, the transitions of the baseline

joint actions in Sample Experimentation Dynamics follow that of the above unper-

turbed better reply process with probabilityp̄ arbitrarily close to1. Since the recur-

rence classes of the unperturbed process are only Nash equilibria, we can conclude

from Theorem 5.6.1 that as̄p approaches1, the probability that the baseline action for

sufficiently larget1 will be a (pure) Nash equilibrium can be made arbitrarily close to

1. By selecting the exploration probabilityε sufficiently small, we can also conclude

that the joint action during exploration phases, i.e.,a(mt1 + t2), will also be a Nash

equilibrium with probability arbitrarily close to 1.

5.2.3.2 Noisy Utility Measurements

Suppose that each player receives a noisy measurement of his true utility, i.e.,

Ũi(ai, a−i) = Ui(ai, a−i) + νi,

whereνi is an i.i.d. random variable with zero mean. In the regret testing algorithm

with noisy utility measurements, the average utility for actionai during the exploration
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phase at timet1 is now

V̂ ai
i (t1) =


1

n
ai
i (t1)

∑m
t2=1 I{ai = ǎi(t1, t2)}Ũi(ǎ(t1, t2)), nai

i (t1) > 0;

Umin, nai
i (t1) = 0.

A straightforward modification of the proof of Theorem 5.2.3 leads to the following

theorem.

Theorem 5.2.4.LetG be a finiten-player weakly acyclic game where players’ utilities

are corrupted with a zero mean noise process. If all players use the regret testing

dynamics, then for any

• probabilityp < 1,

• tolerance levelδ ∈ (0, α),

• inertia ω ∈ (0, 1), and

• exploration rateε satisfyingmin{(α− δ)/4, δ/4, 1− p} > (1− (1− ε)n) > 0,

if the exploration phase lengthm is sufficiently large, then for all sufficiently large

timest > 0, a(t) is a Nash equilibrium ofG with at least probabilityp.

5.2.3.3 Comment on Length and Synchronization of Players’ Exploration Phases

In the proof of Theorem 5.2.3, we assumed that all players’ exploration phases were

synchronized and of the same length. This assumption was used to ensure that the

baseline action of the other players remained constant when a player assessed the per-

formance of a particular action. Because of the players’ inertia this assumption is

unnecessary. The general idea is as follows: a player will repeat his baseline action

regardless of his better response set with positive probability because of his inertia.

Therefore, if all players repeat their baseline action a sufficient number of times, which
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happens with positive probability, then the joint baseline action would remain constant

long enough for any player to evaluate an accurate better response set for that particular

joint baseline action.

5.3 Influencing Nash Equilibria in Resource Allocation Problems

In this section we will derive an approach for influencing the Nash equilibria of a

resource allocation problem using the idea of marginal cost pricing. We will illustrate

the setup and our approach on a congestion game which is an example of a resource

allocation problem.

5.3.1 Congestion Game with Tolls Setup

We consider a congestion game, as defined in Section 2.3.3, with a player setP =

{P1, . . . ,Pn}, a set of resourcesR, and a congestioncr : {0, 1, 2, ...} → R for each

resourcer ∈ R.

One approach for equilibrium manipulation is to influence drivers’ utilities with

tolls [San02], as introduced in Section 3.4.2. In a congestion game with tolls, a driver’s

utility takes on the form

Ui(a) = −
∑
r∈Ai

cr(σr(a)) + tr(σr(a)),

wheretr(k) is the toll imposed on router if there arek users.

In Section 3.4.2, we analyzed the situation in which a global planner was interested

in minimizing the total congestion experienced by all drivers on the network, which

can be evaluated

Tc(a) :=
∑
r∈R

σr(a)cr(σr(a)).

Now suppose that the global planner is interested in minimizing amore general
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measure3,

φ(a) :=
∑
r∈R

fr(σr(a))cr(σr(a)). (5.5)

An example of an objective function that fits within this framework and may be prac-

tical for general resource allocation problems is

φ(a) =
∑
r∈R

cr(σr(a)).

We will now show that there exists a set of tolls,tr(·), such that the potential

function associated with the congestion game with tolls will be aligned with the global

planner’s objective function of the form given in equation (5.5).

Proposition 5.3.1. Consider a congestion game of any network topology. If the im-

posed tolls are set as

tr(k) = (fr(k)− 1)cr(k)− fr(k − 1)cr(k − 1), ∀k ≥ 1,

then the global planners objective,φc(a) = −φ(a), is a potential function for the

congestion game with tolls.

Proof. Let a1 = {a1
i , a−i} anda2 = {a2

i , a−i}. We will use the shorthand notationσa1

r

to representσr(a
1). The change in utility incurred by driverdi in changing from route

a2
i to routea1

i is

Ui(a
1)− Ui(a

2) = −
∑
r∈A1

i

(
cr(σ

a1

r ) + tr(σ
a1

r )
)

+
∑
r∈A2

i

(
cr(σ

a2

r ) + tr(σ
a2

r )
)
,

= −
∑

r∈A1
i \a2

i

(
cr(σ

a1

r ) + tr(σ
a1

r )
)

+
∑

r∈A2
i \a1

i

(
cr(σ

a2

r ) + tr(σ
a2

r )
)
.

3In fact, if cr(σr(a)) 6= 0 for all a, then (5.5) is equivalent to
∑

r∈R f̃r(σr(a)) where

fr(σr(a)) = f̃r(σr(a))
cr(σr(a)) .
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The change in the total negative congestion from the joint actiona2 to a1 is

φc(a
1)− φc(a

2) = −
∑

r∈(a1
i∪a2

i )

(
fr(σ

a1

r )cr(σ
a1

r )− fr(σ
a2

r )cr(σ
a2

r )
)
.

Since

∑
r∈(a1

i∩a2
i )

(
fr(σ

a1

r )cr(σ
a1

r )− fr(σ
a2

r )cr(σ
a2

r )
)

= 0,

the change in the total negative congestion is

φc(a
1)− φc(a

2) =−
∑

r∈A1
i \a2

i

(
fr(σ

a1

r )cr(σ
a1

r )− fr(σ
a2

r )cr(σ
a2

r )
)

−
∑

r∈A2
i \a1

i

(
fr(σ

a1

r )cr(σ
a1

r )− fr(σ
a2

r )cr(σ
a2

r )
)
.

Expanding the first term, we obtain

∑
r∈A1

i \a2
i

(
fr(σ

a1

r )cr(σ
a1

r )− fr(σ
a2

r )cr(σ
a2

r )
)

=
∑

r∈A1
i \a2

i

(
fr(σ

a1

r )cr(σ
a1

r )− (fr(σ
a1

r − 1))cr(σ
a1

r − 1)
)
,

=
∑

r∈A1
i \a2

i

(
fr(σ

a1

r )cr(σ
a1

r )− ((fr(σ
a1

r )− 1)cr(σ
a1

r )− tr(σ
a1

r ))
)
,

=
∑

r∈A1
i \a2

i

(
cr(σ

a1

r ) + tr(σ
a1

r )
)
.

Therefore,

φc(a
1)− φc(a

2) = −
∑

r∈A1
i \a2

i

(
cr(σ

a1

r ) + tr(σ
a1

r )
)

+
∑

r∈A2
i \a1

i

(
cr(σ

a2

r ) + tr(σ
a2

r )
)
,

= Ui(a
1)− Ui(a

2).
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By implementing the tolling scheme set forth in Proposition 5.3.1, we guarantee

that all action profiles that minimize the global planner’s objective are equilibrium of

the congestion game with tolls.

In the special case thatfr(σr(a)) = σr(a), then Proposition 5.3.1 produces the

same tolls as in Proposition 3.4.1

5.4 Illustrative Example – Braess’ Paradox

We will consider a discrete representation of the congestion game setup considered in

Braess’ Paradox [Bra68]. In our setting, there are 1000 vehicles that need to traverse

through the network. The network topology and associated congestion functions are

illustrated in Figure 5.4. Each vehicle can select one of the four possible paths to

traverse across the network.

c(k) = 1

c(k) = 1c(k) = k / 1000

c(k) = 0

c(k) = k / 1000

Start Finish

Figure 5.4: Congestion Game Setup – Braess’ Paradox

The reason for using this setup as an illustration of the learning algorithms and

equilibrium manipulation approach developed in this chapter is that the Nash equilib-

rium of this particular congestion game is easily identifiable. The unique Nash equi-
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librium is when all vehicles take the route as highlighted in Figure 5.5. At this Nash

equilibrium each vehicle has a utility of 2 and the total congestion is 2000.

c(k) = 1

c(k) = 1c(k) = k / 1000

c(k) = 0

c(k) = k / 1000

Figure 5.5: Illustration of Nash Equilibrium in Braess’ Paradox.

Since a potential game is weakly acyclic, the payoff based learning dynamics in this

chapter are applicable learning algorithms for this congestion game. In a congestion

game, a payoff based learning algorithms means that drivers have accessonly to the

actual congestion experienced. Drivers are unaware of the congestion level on any

alternative routes. Figure 5.6 shows the evolution of drivers on routes when using the

Simple Experimentation dynamics. This simulation used an experimentation rate of

ε = 0.25%. The colors on the plots are consistent with the colors of each route as

indicated in Figure 5.4. One can observe that the vehicles’ collective behavior does

indeed approach that of the Nash equilibrium.

In this congestion game, it is also easy to verify that this vehicle distribution does

not minimize the total congestion experience by all drivers over the network. The dis-

tribution that minimizes the total congestion over the network is when half the vehicles

occupy the top two roads and the other half occupy the bottom two roads. The middle

road (pink) is irrelevant.
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Figure 5.6: Braess’ Paradox: Evolution of Number of Vehicles on Each Road Using Simple
Experimentation Dynamics

One can employ the tolling scheme developed in the previous section to locally

influence vehicle behavior to achieve this objective. In this setting, the new cost func-

tions, i.e. congestion plus tolls, are illustrated in Figure 5.7.

Figure 5.8 shows the evolution of drivers on routes when using the Simple Exper-

imentation dynamics. This simulation used an experimentation rate ofε = 0.25%.

When using this tolling scheme, the vehicles’ collective behavior approaches the re-

fined Nash equilibrium which now minimizes the total congestion experienced on the

network. The total congestion experienced on the network is now approximately 1500.

There are other tolling schemes that would have resulted in the desired allocation.

One approach is to assign an infinite cost to the middle road, which is equivalent to

removing it from the network. Under this scenario, the unique Nash equilibrium is for

half the vehicles to occupy the top route and half the bottom, which would minimize
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c(k) = 1

c(k) = 1
c(k) = k / 1000 +

(k-1) / 1000

c(k) = 0

c(k) = k / 1000 +
(k-1) / 1000

Figure 5.7: Braess’ Paradox: Congestion Game Setup with Tolls to Minimize Total Congestion

the total congestion on the network. Therefore, the existence of this extra road, even

though it has zero cost, resulted in the unique Nash equilibrium having a higher total

congestion. This is Braess’ Paradox [Bra68].

The advantage of the tolling scheme set forth in this chapter is that it gives a sys-

tematic method for influencing the Nash equilibria of any congestion game. We would

like to highlight that this tolling scheme only guarantees that the action profiles that

maximize the desired objective function are Nash equilibria of the new congestion

game with tolls. However, it does not guarantee the lack of suboptimal Nash equilib-

ria.

In many applications, players may not have access to their true utility, but do have

access to a noisy measurement of their utility. For example, in the traffic setting, this

noisy measurement could be the result of accidents or weather conditions. We will

revisit the original congestion game (without tolls) as illustrated in Figure 5.4. We will

now assume that a driver’s utility measurement takes on the form

Ũi(a) = −
∑
r∈Ai

cr(σr(a)) + νi,

whereνi is a random variable with zero mean and variance of 0.1. We will assume that
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Figure 5.8: Braess’ Paradox: Evolution of Number of Vehicles on Each Road Using Simple
Experimentation Dynamics with Optimal Tolls

the noise is driver specific rather than road specific.

Figure 5.9 shows a comparison of the evolution of drivers on routes when using the

Simple and Sample Experimentation dynamics. The Simple Experimentation dynam-

ics simulation used an experimentation rateε = 0.25%. The Sample Experimentation

dynamics simulation used an exploration rateε = 0.25%, a tolerance levelδ = 0.002,

an exploration phase lengthm = 500000, and inertiaω = 0.85. As expected, the noisy

utility measurements influenced vehicle behavior more in the Simple Experimentation

dynamics than the Sample Experimentation dynamics.

5.5 Concluding Remarks and Future Work

We have introduced Safe Experimentation dynamics for identical interest games, Sim-

ple Experimentation dynamics for weakly acyclic games with noise-free utility mea-
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Figure 5.9: Braess’ Paradox: Comparison of Evolution of Number of Vehicles on Each Road
Using Simple Experimentation Dynamics and Sample Experimentation Dynamics (baseline)
with Noisy Utility Measurements

surements, and Sample Experimentation dynamics for weakly acyclic games with

noisy utility measurements. For all three settings, we have shown that for sufficiently

large times, the joint action taken by players will constitute a Nash equilibrium. Fur-

thermore, we have shown how to guarantee that a collective objective in a congestion

game is a (non-unique) Nash equilibrium.

Our motivation has been that in many engineered systems, the functional forms of

utility functions are not available, and so players must adjust their strategies through an

adaptive process using only payoff measurements. In the dynamic processes defined

here, there is no explicit cooperation or communication between players. One the one

hand, this lack of explicit coordination offers an element of robustness to a variety of

uncertainties in the strategy adjustment processes. Nonetheless, an interesting future

direction would be to investigate to what degree explicit coordination through limited

communications could be beneficial.
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5.6 Appendix to Chapter 5

5.6.1 Background on Resistance Trees

For a detailed review of the theory of resistance trees, please see [You93]. LetP 0

denote the probability transition matrix for a finite state Markov chain over the state

spaceZ. Consider a “perturbed” process such that the size of the perturbations can

be indexed by a scalarε > 0, and letP ε be the associated transition probability ma-

trix. The processP ε is called aregular perturbed Markov processif P ε is ergodic

for all sufficiently smallε > 0 andP ε approachesP 0 at an exponentially smooth rate

[You93]. Specifically, the latter condition means that∀z, z′ ∈ Z,

lim
ε→0+

P ε
zz′ = P 0

zz′ ,

and

P ε
zz′ > 0 for someε > 0 ⇒ 0 < lim

ε→0+

P ε
zz′

εr(z→z′)
<∞,

for some nonnegative real numberr(z → z′), which is called theresistanceof the

transitionz → z′. (Note in particular that ifP 0
zz′ > 0 thenr(z → z′) = 0.)

Let the recurrence classes ofP 0 be denoted byE1, E2, ..., EN . For each pair of

distinct recurrence classesEi andEj, i 6= j, an ij-path is defined to be a sequence

of distinct statesζ = (z1 → z2 → ... → zn) such thatz1 ∈ Ei andzn ∈ Ej. The

resistance of this path is the sum of the resistances of its edges, that is,r(ζ) = r(z1 →

z2) + r(z2 → z3) + ... + r(zn−1 → zn). Let ρij = min r(ζ) be the least resistance

over allij-pathsζ. Note thatρij must be positive for all distincti andj, because there

exists no path of zero resistance between distinct recurrence classes.

Now construct a complete directed graph withN vertices, one for each recurrence

class. The vertex corresponding to classEj will be calledj. The weight on the directed

edgei→ j isρij. A tree,T , rooted at vertexj, orj-tree, is a set ofN−1 directed edges
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such that, from every vertex different fromj, there is a unique directed path in the tree

to j. The resistance of a rooted tree,T , is the sum of the resistancesρij on theN − 1

edges that compose it. Thestochastic potential, γj, of the recurrence classEj is defined

to be the minimum resistance over all trees rooted atj. The following theorem gives a

simple criterion for determining the stochastically stable states ([You93], Theorem 4).

Theorem 5.6.1.LetP ε be a regular perturbed Markov process, and for eachε > 0 let

µε be the unique stationary distribution ofP ε. Thenlimε→0 µ
ε exists and the limiting

distributionµ0 is a stationary distribution ofP 0. The stochastically stable states (i.e.,

the support ofµ0) are precisely those states contained in the recurrence classes with

minimum stochastic potential.
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CHAPTER 6

Connections Between Cooperative Control and

Potential Games

In this chapter, we present a view of cooperative control using the language of learn-

ing in games. We review the game theoretic concepts of potential games and weakly

acyclic games and demonstrate how several cooperative control problems such as con-

sensus and dynamic sensor coverage can be formulated in these settings. Motivated

by this connection, we build upon game theoretic concepts to better accommodate a

broader class of cooperative control problems. In particular, we extend existing learn-

ing algorithms to accommodate restricted action sets caused by limitations in agent

capabilities. Furthermore, we also introduce a new class of games, called sometimes

weakly acyclic games, for time-varying objective functions and action sets, and pro-

vide distributed algorithms for convergence to an equilibrium. Lastly, we illustrate the

potential benefits of this connection on several cooperative control problems. For the

consensus problem, we demonstrate that consensus can be reached even in an environ-

ment with non-convex obstructions. For the functional consensus problem, we demon-

strate an approach that will allow agents to reach consensus on a specific consensus

point. For the dynamic sensor coverage problem, we demonstrate how autonomous

sensors can distribute themselves using only local information in such a way as to

maximize the probability of detecting an event over a given mission space. Lastly,

we demonstrate how the popular mathematical game of Sudoku can be modeled as a
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potential game and solved using the learning algorithms discussed in this chapter.

6.1 Introduction

Our goals in this chapter are to establish a relationship between cooperative control

problems, such as the consensus problem, and game theoretic methods, and to demon-

strate the effectiveness of utilizing game theoretic approaches for controlling multi-

agent systems. The results presented here are of independent interest in terms of their

applicability to a large class of games. However, we will focus on the consensus prob-

lem as the main illustration of the approach.

We consider a discrete time version of the consensus problem initiated in [TBA86]

in which a group of playersP = {P1, . . . ,Pn} seek to come to an agreement, or

consensus, upon a common scalar value1 by repeatedly interacting with one another.

By reaching consensus, we mean converging to the agreement space characterized by

a1 = a2 = · · · = an,

whereai is referred to as the state of playerPi. Several papers study different in-

teraction models and analyze the conditions under whether these interactions lead to

consensus [BHO05, XB04, XB05, OM03, OFM07, Mor04, JLM03, KBS06].

A well studied protocol, referred to here as the “consensus algorithm”, can be

described as follows. At each time stept ∈ {0, 1, . . . }, each playerPi is allowed to

interact with a group of other players, who are referred to as theneighborsof playerPi

and denoted asNi(t). During an interaction, each playerPi is informed of the current

(or possibly delayed) state of all his neighbors. PlayerPi then updates his state by

forming a convex combination of his state along with the state of all his neighbors.

1The forthcoming results will hold for multi-dimensional consensus as well.
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The consensus algorithm takes on the general form

ai(t+ 1) =
∑

Pj∈Ni(t)

ωij(t)aj(t), (6.1)

whereωij(t) is the relative weight that playerPi places on the state of playerPj at

time t. The interaction topology is described in terms of a time varying directed graph

G(V,E(t)) with the set of nodesV = P and the set of edgesE(t) ⊂ P ×P at timet.

The set of edges is directly related to the neighbor sets as follows:(Pi,Pj) ∈ E(t) if

and only ifPj ∈ Ni(t). We will refer toG(V,E(t)) as the interaction graph at timet.

There has been extensive research centered on understanding the conditions nec-

essary for guaranteeing the convergence of all states, i.e.limt→∞ ai(t) → a∗, for

all playersPi ∈ P. The convergence properties of the consensus algorithm have

been studied under several interaction models encompassing delays in information ex-

change, connectivity issues, varying topologies and noisy measurements.

Surprisingly, there has been relatively little research that links cooperative control

problems to a branch of the learning in games literature [You98] that emphasizes coor-

dination games. The goal of this chapter is to better establish this link and to develop

new algorithms for broader classes of cooperative control problems as well as games.

In Section 6.2 we establish a connection between cooperative control problems

and potential games. In Section 6.3 we model the consensus problem as a potential

game and present suitable learning algorithms that guarantee that players will come

to a consensus even in an environment filled with non-convex obstructions. In Sec-

tion 6.4 we introduce a new class of games called sometimes weakly acyclic games,

which generalize potential games, and present simple learning dynamics with desir-

able convergence properties. In Section 6.5 we show that the consensus problem can

be modeled as a sometimes weakly acyclic game. In Section 6.6 we develop learning

algorithms that can accommodate group based decisions. In Section 6.7 we model the

112



functional consensus problem as a potential game with group based decisions. In Sec-

tion 6.8 we illustrate the connection between cooperative control and potential games

on the dynamic sensor allocation problem and also the mathematical puzzle of Sudoku.

Section 6.9 presents some final remarks.

6.2 Cooperative Control Problems and Potential Games

Cooperative control problems entail several autonomous players seeking to collec-

tively accomplish a global objective. The consensus problem is one example of a

cooperative control problem, where the global objective is for all players to reach con-

sensus upon a given state. The challenge in cooperative control problems is designing

local control laws and/or local objective functions for each of the individual players so

that collectively they accomplish the desired global objective.

One approach for cooperative control problems is to assign each individual player

a fixed protocol or policy. This protocol specifies precisely what each player should

do under any environmental condition. The consensus algorithm set forth in Equation

(6.1) is an example of such a policy based approach. One challenge in this approach

is to incorporate dynamic or evolving constraints on player policies. For example,

suppose a global planner desires a group of autonomous players to physically con-

verge to a central location in an environment containing obstructions. The standard

consensus algorithm may not be applicable to this problem since limitations in control

capabilities caused by environmental obstructions are not considered. Variations of the

consensus algorithm could possibly be designed to accommodate obstructions, but the

analysis and control design would be more challenging.

An alternative,game theoreticapproach to cooperative control problems, and our

main interest in this chapter, is to assign each individual player a local objective func-
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tion. In this setting, each playerPi ∈ P is assigned an action setAi and a local

objective functionUi : A → R, whereA =
∏
Pi∈P Ai is the set of joint actions. An

example of an objective function that will be studied in the following section is

Ui(ai, a−i) := −
∑
Pj∈Ni

‖ai − aj‖,

where‖ · ‖ is any norm,Ni is the neighbor set of playerPi, and

a−i = {a1, . . . , ai−i, ai+1, . . . , an} denotes the collection of actions of players other

than playerPi. With this notation, we will frequently express the joint actiona as

(ai, a−i).

We are interested in analyzing the long term behavior when players are repeatedly

allowed to interact with one another in a competitive environment where each player

seeks to selfishly maximize his own objective function. These interactions will be

modeled as a repeated game, in which a one stage game is repeated each time stept ∈

{0, 1, 2, . . . }. At every time stept > 0, each playerPi ∈ P selects an actionai ∈ Ai

seeking to myopically maximize his expected utility. Since a player’s utility may be

adversely affected by the actions of other players, the player can use his observations

from the games played at times{0, 1, . . . , t− 1} to develop a behavioral model of the

other players.

At any timet > 0, the learning dynamics specify how any playerPi processes past

observations from the interactions at times{0, 1, . . . , t− 1} to generate a model of the

behavior of the other players. The learning dynamics that will be used throughout this

chapter are referred to as single stage memory dynamics which have a structural form

similar to that of the consensus algorithm; namely, that the decision of any playerPi

at time t is made using only observations from the game played at timet − 1. The

learning dynamics need not be restricted to single stage memory. A follow up study

could analyze the benefit of using additional memory in learning dynamics for the

consensus problem.
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The challenge of the control design for a game theoretic approach lies in design-

ing the objective functionsand the learning dynamics such that, when players self-

ishly pursue their own objectives, they also collectively accomplish the objective of

the global planner. Suppose that the objective of the global planner is captured by a

potential functionφ : A → R. In any successful multi-agent system each player’s

objective function should be appropriately “aligned” with the objective of the global

planner. This notion of utility alignment in multi-agent systems has a strong connec-

tion to potential games [MS96b]. For convenience, we will restate the definition of

potential games originally defined in Section 2.3.2.

Definition 6.2.1 (Potential Games).Player action sets{Ai}n
i=1 together with player

objective functions{Ui : A → R}n
i=1 constitute apotential gameif, for some potential

functionφ : A → R,

Ui(a
′′
i , a−i)− Ui(a

′
i, a−i) = φ(a′′i , a−i)− φ(a′i, a−i),

for every playerPi ∈ P, for everya′i, a
′′
i ∈ Ai, and for everya−i ∈ ×j 6=iAj.

A potential game, as defined above, requires perfect alignment between the global

objective and the players’ local objective functions, meaning that if a player unilat-

erally changed his action, the change in his objective function would be equal to the

change in the potential function. There are weaker notions of potential games, called

weakly acyclic games, which will be discussed later. The connection between co-

operative control problems and potential games is important because learning algo-

rithms for potential games have been studied extensively in the game theory literature

[MS96a, MS96b, MS97, MAS07b, MAS05]. Accordingly, if it is shown that a co-

operative control problem can be modeled as a potential game, established learning

algorithms with guaranteed asymptotic results could be used to tackle the cooperative

control problem at hand.
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In the following section we will illustrate this opportunity by showing that the

consensus problem can be modeled as a potential game by defining players’ utilities

appropriately.

6.3 Consensus Modeled as a Potential Game

In this section we will formulate the consensus problem as a potential game. First,

we establish a global objective function that captures the notion of consensus. Next,

we show that local objective functions can be assigned to each player so that the re-

sulting game is in fact a potential game. Finally, we present a learning algorithm that

guarantees consensus even in an environment containing non-convex obstructions.

It turns out that the potential game formulation of the consensus problem discussed

in this section requires the interaction graph to be time-invariant and undirected. In

Section 6.5 we relax these requirements by formulating the consensus problem as a

sometimes weakly acyclic game.

6.3.1 Setup: Consensus Problem with a Time-Invariant and Undirected Inter-

action Graph

Consider a consensus problem withn-player setP where each playerPi ∈ P has a

finite action setAi. A player’s action set could represent the finite set of locations that

a player could select.

We will consider the following potential function for the consensus problem

φ(a) := −
∑
Pi∈P

∑
Pj∈Ni

‖ai − aj‖
2

, (6.2)

whereNi ⊂ P is playerPi’s time-invariant neighbor set. In the case where the interac-
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tion graph induced by the neighbor sets{Ni}n
i=1 is connected2, the potential function

above achieves the value of 0 if and only if the action profilea ∈ A constitutes a

consensus, i.e.,

φ(a) = 0 ⇔ a1 = · · · = an.

The goal is to assign each player an objective function that it is perfectly aligned

with the global objective in (6.2). One approach would be to assign each player the

following objective function:

Ui(a) = φ(a).

This assignment would require each player to observe the decision of all players in

order to evaluate his payoff for a particular action choice, which may be infeasible. An

alternative approach would be to assign each player an objective function that captures

the player’s marginal contribution to the potential function. For the consensus problem,

this translates to each player being assigned the objective function

Ui(ai, a−i) = −
∑
Pj∈Ni

‖ai − aj‖. (6.3)

Now, each player’s objective function isonly dependent on the actions of his neigh-

bors. An objective function of this form is referred to as Wonderful Life Utility; see

[AMS07, WT99]. It is known that assigning each agent a Wonderful Life Utility leads

to a potential game [AMS07, WT99]; however, we will explicitly show this for the

consensus problem in the following claim.

Claim 6.3.1. Player objective functions (6.3) constitute a potential game with the po-

tential function (6.2) provided that the time-invariant interaction graph induced by the

neighbor sets{Ni}n
i=1 is undirected, i.e.,

Pj ∈ Ni ⇔ Pi ∈ Nj.

2A graph is connected if there exists a path from any node to any other node.
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Proof. Since the interaction graph is time-invariant and undirected, the potential func-

tion can be expressed as

φ(a) = −
∑
Pj∈Ni

‖ai − aj‖ −
∑
Pj 6=Pi

∑
Pk∈Nj\Pi

‖aj − ak‖
2

.

The change in objective of playerPi by switching from actiona1
i to actiona2

i provided

that all other players collectively playa−i is

Ui(a2
i , a−i)− Ui(a1

i , a−i) =
∑
Pj∈Ni

−‖a2
i − aj‖+ ‖a1

i − aj‖,

= φ(a2
i , a−i)− φ(a1

i , a−i).

Note that the above claim does not require the interaction graph to be connected. There

may exist other potential functions and subsequent player objective functions that can

accommodate more general setups. For a detailed discussion on possible player objec-

tive functions derived from a given potential function, see [AMS07].

We now assume that the above game is repeatedly played at discrete time steps

t ∈ {0, 1, 2, . . . }. We are interested in determining the limiting behavior of the players,

in particular whether or not they reach a consensus, under various interaction models.

Since the consensus problem is modeled as a potential game, there are a large num-

ber of learning algorithms available with guaranteed results [You98, You05, AMS07,

MS96b, MAS07b, MAS05]. Most of the learning algorithms for potential games guar-

antee that the player behavior converges to a Nash equilibrium.

It is straightforward to see that any consensus point is a Nash equilibrium of the

game characterized by the player objective functions (6.3). This is because a consensus
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point maximizes the potential function as well as the player objective functions (6.3).

However, the converse statement is not true. LetA∗ denote the set of Nash equilibria

andAc denote the set of consensus points. We know thatAc ⊂ A∗ where the inclusion

can be proper. In other words, a Nash equilibrium, saya∗ ∈ A∗, can be suboptimal,

i.e.,φ(a∗) < 0, and hence fail to be a consensus point.

6.3.2 A Learning Algorithm for Potential Games with Suboptimal Nash Equi-

libria

Before stating the learning algorithm, we start with some notation. Let the strategy

of playerPi at timet be denoted by the probability distributionpi(t) ∈ ∆(Ai) where

∆(Ai) denotes the set of probability distributions over the setAi. Using this strategy,

playerPi randomly selects an action fromAi at timet according topi(t).

Consider the following learning algorithm known as spatial adaptive play (SAP)

[You98]. At each timet > 0, one playerPi ∈ P is randomly chosen (with equal

probability for each player) and allowed to update his action. All other players must

repeat their actions, i.e.a−i(t) = a−i(t − 1). At time t, the updating playerPi

randomly selects an action fromAi according to his strategypi(t) ∈ ∆(Ai) where the

ai−th componentpai
i (t) of his strategy is given as

pai
i (t) =

exp{β Ui(ai, a−i(t− 1))}∑
āi∈Ai

exp{β Ui(āi, a−i(t− 1))}
,

for some exploration parameterβ ≥ 0. The constantβ determines how likely playerPi

is to select a suboptimal action. Ifβ = 0, playerPi will select any actionai ∈ Ai with

equal probability. Asβ → ∞, playerPi will select an action from his best response

set

{ai ∈ Ai : Ui(ai, a−i(t− 1)) = max
a′i∈Ai

Ui(a
′
i, a−i(t− 1))}

with arbitrarily high probability.
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In a repeated potential game in which all players adhere to SAP, the stationary

distributionµ ∈ ∆(A) of the joint action profiles is given in [You98] as

µ(a) =
exp{β φ(a)}∑

ā∈A exp{β φ(ā)}
.

One can interpret the stationary distributionµ as follows: for sufficiently large times

t > 0, µ(a) equals the probability thata(t) = a. As β ↑ ∞, all the weight of the

stationary distributionµ is on the joint actions that maximize the potential function.

In the potential game formulation of the consensus problem, the joint actions that

maximize the potential function (6.2) are precisely the consensus points provided that

the interaction graph is connected. Therefore, if all players update their actions using

the learning algorithm SAP with sufficiently largeβ, then the players will reach a

consensus asymptotically with arbitrarily high probability.

6.3.3 A Learning Algorithm for Potential Games with Suboptimal Nash Equi-

libria and Restricted Action Sets

One issue with the applicability of the learning algorithm SAP for the consensus prob-

lem is that it permits any player to select any action in his action set. Because of player

mobility limitations, this may not be possible. For example, a player may only be able

to move to a position within a fixed radius of his current position. Therefore, we seek

to modify SAP by conditioning a player’s action set on his previous action. Leta(t−1)

be the joint action at timet− 1. With restricted action sets, the set of actions available

to playerPi at timet is a function of his action at timet − 1 and will be denoted as

Ri(ai(t − 1)) ⊂ Ai. We will adopt the convention thatai ∈ Ri(ai) for any action

ai ∈ Ai, i.e., a player is always allowed to stay with his previous action.

We will introduce a variant of SAP called binary Restrictive Spatial Adaptive Play

(RSAP) to accommodate the notion of restricted action sets. RSAP can be described

as follows: At each time stept > 0, one playerPi ∈ P is randomly chosen (with equal
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probability for each player) and allowed to update his action. All other players must

repeat their actions, i.e.a−i(t) = a−i(t− 1). At time t, the updating playerPi selects

one trial action̂ai randomly from his allowable setRi(ai(t − 1)) with the following

probability:

• Pr [âi = ai] = 1
Ni

for anyai ∈ Ri(ai(t− 1)) \ ai(t− 1),

• Pr [âi = ai(t− 1)] = 1− |Ri(ai(t−1))|−1
Ni

,

whereNi denotes the maximum number of actions in any restricted action set for

playerPi, i.e.,Ni := maxai∈Ai
|Ri(ai)|. After playerPi selects a trial action̂ai, he

chooses his action at timet as follows:

Pr [ai(t) = âi] =
exp{β Ui(âi, a−i(t− 1))}

exp{β Ui(âi, a−i(t− 1))}+ exp{β Ui(a(t− 1))}
,

Pr [ai(t) = ai(t− 1)] =
exp{β Ui(a(t− 1))}

exp{β Ui(âi, a−i(t− 1))}+ exp{β Ui(a(t− 1))}
,

whereβ ≥ 0 is an exploration parameter. Note that ifâi is selected asai(t − 1) then

Pr [ai(t) = ai(t− 1)] = 1.

We make the following assumptions regarding the restricted action sets.

Assumption 6.3.1 (Reversibility).For any playerPi ∈ P and any action paira1
i , a

2
i ∈

Ai,

a2
i ∈ Ri(a

1
i ) ⇔ a1

i ∈ Ri(a
2
i ).

Assumption 6.3.2 (Feasibility).For any playerPi ∈ P and any action paira0
i , a

n
i ∈

Ai, there exists a sequence of actionsa0
i → a1

i → · · · → an
i satisfyingak

i ∈ Ri(a
k−1
i )

for all k ∈ {1, 2, . . . , n}.

Theorem 6.3.1.Consider a finiten-player potential game with potential functionφ(·).

If the restricted action sets satisfy Assumptions 6.3.1 and 6.3.2, then RSAP induces
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a Markov process over the state spaceA where the unique stationary distribution

µ ∈ ∆(A) is given as

µ(a) =
exp{β φ(a)}∑

ā∈A exp{β φ(ā)}
, for anya ∈ A. (6.4)

Proof. The proof follows along the lines of the proof of Theorem 6.2 in [You98]. By

Assumptions 6.3.1 and 6.3.2 we know that the Markov process induced by RSAP is

irreducible and aperiodic; therefore, the process has a unique stationary distribution.

Below, we show that this unique distribution must be (6.4) by verifying that the distri-

bution (6.4) satisfies the detailed balanced equations

µ(a)Pab = µ(b)Pba,

for anya, b ∈ A, where

Pab := Pr [a(t) = b|a(t− 1) = a] .

Note that the only nontrivial case is the one wherea andb differ by exactly one player

Pi, that is,a−i = b−i butai 6= bi whereai ∈ Ri(bi) which also implies thatbi ∈ Ri(ai).

Since playerPi has probability1/n of being chosen in any given period and any trial

actionbi ∈ Ri(ai), bi 6= ai, has probability of1/Ni of being chosen, it follows that

µ(a)Pab =

[
exp{β φ(a)}∑

z∈A exp{β φ(z)}

]
×

[
(1/n)(1/Ni)

exp{β Ui(b)}
exp{β Ui(a)}+ exp{β Ui(b)}

]
.

Letting

λ =

(
1∑

z∈A exp{β φ(z)}

)
×

(
(1/n)(1/Ni)

exp{β Ui(a)}+ exp{β Ui(b)}

)
,

we obtain

µ(a)Pab = λ exp{βφ(a) + βUi(b)}.

SinceUi(b)− Ui(a) = φ(b)− φ(a), we have

µ(a)Pab = λ exp{βφ(b) + βUi(a)},
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which leads us to

µ(a)Pab = µ(b)Pba.

Note that if all players adhere to the learning dynamics RSAP in a consensus prob-

lem where the interaction graph is time-invariant and undirected, the restricted action

sets satisfy Assumptions 6.3.1 and 6.3.2, and players are assigned the utilities (6.3),

then, at sufficiently large timest, the players’ collective behavior will maximize the

potential function (6.2) with arbitrarily high probability provided thatβ is sufficiently

large. Furthermore, if the interaction graph is connected and consensus is possible,

meaning(A1 ∩ A2 ∩ · · · ∩ An) 6= ∅, then, at sufficiently large timest > 0, the

players’ actions will constitute a consensus with arbitrarily high probability even in an

environment filled with non-convex obstructions.

6.3.4 Example: Consensus in an Environment with Non-convex Obstructions

Consider the 2-D consensus problem with player setP = {P1,P2,P3,P4}. Each

playerPi has an action setAi = {1, 2, . . . , 10} × {1, 2, .., 10} as illustrated in Figure

6.1. The arrows represent the time-invariant and undirected edges of the connected

interaction graph. The restricted action sets are highlighted for playersP2 andP4. At

any given time, any player can have at most 9 possible actions; therefore,Ni = 9 for

all playersPi ∈ P.

We simulated RSAP on the consensus problem with the interaction graph, envi-

ronmental obstruction, and the initial conditions shown in Figure 6.1. We increase the

exploration parameterβ ast/200 during player interactions. The complete action path

of all players reaching a consensus is shown in Figure 6.2.

123



0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Player 1

Player 2

Player 3

Player 4

 Restricted
Action Sets

Obstruction

Figure 6.1: Example: Setup of a Consensus Problem with Restricted Action Sets and
Non-convex Environmental Obstructions.

6.4 Weakly Acyclic and Sometimes Weakly Acyclic Games

In potential games, players’ objective functions must be perfectly aligned with the po-

tential of the game. In the potential game formulation of the consensus problem, this

alignment condition required that the interaction graph be time-invariant and undi-

rected. In this section we will seek to relax this alignment requirement by allowing

player objective functions to be “somewhat” aligned with the potential of the game.

We will review a weaker form of potential games called weakly acyclic games and

introduce a new class of games calledsometimes weakly acyclic games. We will also

present simple learning dynamics that guarantee convergence to auniversal Nash equi-

librium, to be defined later, in any sometimes weakly acyclic game.
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Figure 6.2: Example: Evolution of the Action Path in the Consensus Problem with Restricted
Action Sets and Non-convex Environmental Obstructions.

6.4.1 Weakly Acyclic Games

Recall the definition of a weakly acyclic game from Section 2.3.4. A game is weakly

acyclic if, for anya ∈ A, there exists a better reply path starting ata and ending at

some Nash equilibrium [You98, You05].

The above definition does not clearly identify the similarities between potential

games and weakly acyclic games. Furthermore, using this definition to show that a

given gameG, i.e., the players, objective functions, and action sets, is weakly acyclic

would be problematic. With these issues in mind, we will now derive an equivalent

definition for weakly acyclic games that utilizes potential functions.

Lemma 6.4.1.A game is weakly acyclic if and only if there exists a potential function

φ : A → R such that for any actiona ∈ A that is not a Nash equilibrium, there
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exists a playerPi ∈ P with an actiona∗i ∈ Ai such thatUi(a
∗
i , a−i) > Ui(ai, a−i) and

φ(a∗i , a−i) > φ(ai, a−i).

Proof. (⇐) Select any actiona0 ∈ A. If a0 is not a Nash equilibrium, there exists a

playerPi ∈ P with an actiona∗i ∈ Ai such thatUi(a
1) > Ui(a

0) andφ(a1) > φ(a0)

wherea1 = (a∗i , a
0
−i).

Repeat this process and construct a patha0, a1, . . . , an until it can no longer be

extended. Note first that such a path cannot cycle back on itself, becauseφ is strictly

increasing along the path. SinceA is finite, the path cannot be extended indefinitely.

Hence, the last element in this path must be a Nash equilibrium.

(⇒) We will construct a potential functionφ : A → R recursively. Select any

actiona0 ∈ A. Since the game is weakly acyclic, there exists a better reply path

a0, a1, . . . , an wherean is a Nash equilibrium. LetA0 = {a0, a1, . . . , an}. Define the

(finite) potential functionφ over the setA0 satisfying the following conditions:

φ(a0) < φ(a1) < · · · < φ(an).

Now select any actioña0 ∈ A \A0. There exists a better reply pathã0, ã1, . . . , ãm

whereãm is a Nash equilibrium. LetA1 = {ã0, ã1, . . . , ãm}. If A1 ∩ A0 = ∅ then

define the potential functionφ over the setA1 satisfying the following conditions:

φ(ã0) < φ(ã1) < · · · < φ(ãm).

If A1∩A0 6= ∅, then letk∗ = min{k ∈ {1, 2, . . . ,m} : ãk ∈ A0}. Define the potential

functionφ over the truncated (redefined) setA1 = {ã0, ã1, . . . , ãk∗−1} satisfying the

following conditions:

φ(ã0) < φ(ã1) < · · · < φ(ãk∗).

Now select any action̂a0 ∈ A \ (A0 ∪ A1) and repeat until no such action exists.
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The construction of the potential functionφ guarantees that for any actiona ∈ A

that is not a Nash equilibrium, there exists a playerPi ∈ P with an actiona∗i ∈ Ai

such thatUi(a
∗
i , a−i) > Ui(ai, a−i) andφ(a∗i , a−i) > φ(ai, a−i).

6.4.2 Learning Dynamics for Weakly Acyclic Games

We will consider thebetter reply with inertia dynamicsfor weakly acyclic games an-

alyzed in [You93, You05]. Before stating the learning dynamics, we define a player’s

strict better reply setfor any action profilea0 ∈ A as

Bi(a
0) := {ai ∈ Ai : Ui(ai, a

0
−i) > Ui(a

0)}.

The better reply with inertia dynamics can be described as follows. At each time

t > 0, each playerPi presumes that all other players will continue to play their previ-

ous actionsa−i(t − 1). Under this presumption, each playerPi ∈ P selects an action

according to the following strategy at timet:

Bi(a(t− 1)) = ∅ ⇒ ai(t) = ai(t− 1),

Bi(a(t− 1)) 6= ∅ ⇒

 Pr [ai(t) = ai(t− 1)] = α(t),

Pr [ai(t) = a∗i ] = 1−α(t)
|Bi(a(t−1))| ,

for any actiona∗i ∈ Bi(a(t−1)) whereα(t) ∈ (0, 1) is referred to as the player’s inertia

at timet. According to these rules, playerPi will stay with the previous actionai(t−1)

with probabilityα(t) even when there is a perceived opportunity for improvement. We

make the following standing assumption on the players’ willingness to optimize.

Assumption 6.4.1.There exist constantsε and ε̄ such that for all timet ≥ 0 and for

all playersPi ∈ P,

0 < ε < αi(t) < ε̄ < 1.

This assumption implies that players are always willing to optimize with some

nonzero inertia.
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If all players adhere to the better reply with inertia dynamics satisfying Assump-

tion 6.4.1, then the joint action profiles will converge to a Nash equilibrium almost

surely in any weakly acyclic game [You93, You05].

6.4.3 Sometimes Weakly Acyclic Games

In the potential game formulation of the consensus problem, each player was assigned

a time-invariant objective function of the form (6.3). However, in the case of a time-

varying interaction topology, we would like to allow player objective functions to be

time-varying. In this framework, each playerPi is now assigned a local objective

functionUi : A× {0, 1, 2, . . . } → R. We will denote the objective function of player

Pi at timet asUi(a(t), t) wherea(t) is the action profile at timet.

We will call an action profilea∗ auniversal Nash equilibriumif

Ui(a
∗, t) = max

ai∈Ai

Ui(ai, a
∗
−i, t)

for all timest ≥ 0.

We will call a gamesometimes weakly acyclicif there exists a potential function

φ : A → R and a finite time constantT such that for any timet0 > 0 and any action

profilea0 that isnot a universal Nash equilibrium, there exists a timet1 ∈ [t0, t0 + T ],

a playerPi ∈ P, and an actiona∗i ∈ Ai such thatUi(a
∗
i , a

0
−i, t1) > Ui(a

0, t1) and

φ(a∗i , a
0
−i) > φ(a0).

Note that a sometimes weakly acyclic game has at least one universal Nash equi-

librium: namely, an action profile that maximizes the potential functionphi.

6.4.4 Learning Dynamics for Sometimes Weakly Acyclic Games

We will consider the better reply with inertia dynamics for games involving time-

varying objective functions. Before stating the learning dynamics, we redefine a player’s
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strict better reply setfor any action profilea0 ∈ A and timet > 0 as

Bi(a
0, t) := {ai ∈ Ai : Ui(ai, a

0
−i, t) > Ui(a

0, t)}.

The better reply with inertia dynamics can be described as follows. At each timet > 0,

each playerPi presumes that all other players will continue to play their previous

actionsa−i(t − 1). Under this presumption, each playerPi ∈ P selects an action

according to the following strategy at timet:

Bi(a(t− 1), t) = ∅ ⇒ ai(t) = ai(t− 1),

Bi(a(t− 1), t) 6= ∅ ⇒

 Pr [ai(t) = ai(t− 1)] = α(t),

Pr [ai(t) = a∗i ] = (1−α(t))
|Bi(a(t−1),t)| ,

for any actiona∗i ∈ Bi(a(t− 1), t) whereα(t) ∈ (0, 1) is the player’s inertia at timet.

Theorem 6.4.1.Consider ann-player sometimes weakly acyclic game with finite ac-

tion sets. If all players adhere to the better reply with inertia dynamics satisfying

Assumption 6.4.1, then the joint action profiles will converge to a universal Nash equi-

librium almost surely.

Proof. Let φ : A → R andT be the potential function and time constant for the

sometimes weakly acyclic game. Leta(t0) = a0 be the action profile at timet0. If

a0 is a universal Nash equilibrium, thena(t) = a0 for all times t ≥ t0 and we are

done. Otherwise, there exists a timet1 satisfying(t0 + T ) ≥ t1 > t0, a playerPi ∈ P,

and an actiona∗i ∈ Ai such thatUi(a
∗
i , a

0
−i, t1) > Ui(a

0, t1) andφ(a∗i , a
0
−i) > φ(a0).

Because of players’ inertia, the actiona1 = (a∗i , a
0
−i) will be played at timet1 with at

least probabilityεn−1 (1−ε̄)
|A| ε

nT .

One can repeat this argument to show that for any timet0 > 0 and any action

profilea(t0) there exists a joint actiona∗ such that

Pr [a(t) = a∗,∀t ≥ t∗] ≥ ε∗
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where

t∗ = t0 + T |A|,

ε∗ =

(
εn−1 (1− ε̄)

|A|
εn T

)|A|

.

6.5 Consensus Modeled as a Sometimes Weakly Acyclic Game

Two main problems arose in the potential game formulation of the consensus problem.

The first problem was that a Nash equilibrium was not necessarily a consensus point

even when the interaction graph was connected and the environment was obstruction

free. Therefore, we needed to employ a stochastic learning algorithm like SAP or

RSAP to guarantee that the collective behavior of the players would be a consensus

point with arbitrarily high probability. SAP or RSAP led to consensus by introducing

noise into the decision making process, meaning that a player would occasionally make

a suboptimal choice. The second problem was that the interaction graph needed to be

time-invariant, undirected, and connected in order to guarantee consensus.

In this section, we will illustrate that by modeling the consensus problem as a

sometimes weakly acyclic game one can effectively alleviate both problems. For

brevity, we will show that the 1-dimensional consensus problem with appropriately

designed player objective functions is a sometimes weakly acyclic game. However,

one can easily extend this to the multi-dimensional case.
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6.5.1 Setup: Consensus Problem with a Time-Varying and Directed Interaction

Graph

Consider a consensus problem with an-player setP and a time-varying and directed

interaction graph. Each player has a finite action setAi ⊂ R and without loss of

generalities, we will assume thatA1 = A2 = · · · = An. Each playerPi ∈ P is

assigned an objective functionUi : A × {0, 1, 2, ...} → R. We make the following

standard assumption on players’ neighbor sets.

Assumption 6.5.1. Players’ neighbor sets satisfy

Pi ∈ Ni(t), ∀Pi ∈ P , t > 0.

Before introducing the player objective functions, we define the following measure

D(a,P ′) := max
Pi,Pj∈P ′

(ai − aj), (6.5)

whereP ′ ⊆ P, and extreme player sets

Pu(a) := {Pi ∈ P : ai = max
Pj∈P

aj},

P l(a) := {Pi ∈ P : ai = min
Pj∈P

aj},

n(a) := min{|Pu(a)|, |P l(a)|}.

We also define the constantδA > 0 as follows. For anya1, a2 ∈ A and any player sets

P1,P2 ⊂ P such thatD(a1,P1) 6= D(a2,P2), the following inequality is satisfied:

|D(a1,P1)−D(a2,P2)| > δA.

Consider the following potential functionφ : A → R

φ(a) = −D(a,P) + δA(1− n(a)/n). (6.6)
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Note that the potential function is a non-positive function that achieves the value of

0 if and only if the action profile constitutes a consensus. Furthermore, note that the

potential function is independent of the interaction topology.

Rather than specifying a particular objective functions as in (6.3), we will introduce

a class of admissible objective functions. To that end, we define the set ofreasonable

actionsfor playerPi at timet given any action profilea0 ∈ A as

Si(a
0, t) := {ai ∈ Ai : max

Pj∈Ni(t)
a0

j ≥ ai ≥ min
Pk∈Ni(t)

a0
k}.

Note that

ai ∈ Si(a
0, t) ⇒ D(ai, a

0
−i, Ni(t)) ≤ D(a0, Ni(t)).

We will define a general class ofreasonable objective functions. An objective function

for playerPi is called a reasonable objective function if, for any timet > 0, and any

action profilea ∈ A, the better response set satisfies the following two conditions:

1. Bi(a, t) ⊂ {Si(a, t), ∅},

2. |Si(a, t)| > 1 ⇒ Bi(a, t) 6= ∅.

Roughly speaking, these conditions ensure that a player will not value moving further

away from his belief about the location of his neighbors.

We will now relax our requirements on the connectivity and time-invariance of the

interaction graph in the consensus problem. A common assumption on the interaction

graph is connectedness over intervals.

Assumption 6.5.2 (Connectedness Over Intervals).There exists a constantT > 0

such that for any timet > 0, the interaction graph with nodesP and edgesE =

E(t) ∪ · · · ∪ E(t+ T ) is connected.

Claim 6.5.1. Reasonable objective functions introduced above constitute a sometimes

weakly acyclic game with the potential function (6.6) provided that the interaction
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graph satisfies Assumption 6.5.2. Furthermore, every universal Nash equilibrium con-

stitutes consensus.

Proof. It is easy to see that any consensus point is a universal Nash equilibrium. We

will show that if an action profile is not a consensus point, then there exists a player

who can increase his objective function as well as the potential function at some time in

a fixed time window. This implies that every universal Nash equilibrium is a consensus

point and furthermore that the game is sometime weakly acyclic.

Let a0 = a(t0) be any joint action that is not a consensus point. We will show

that for some timet1 ∈ [t0, t0 + T ] there exists a playerPi ∈ P with an action

a∗i ∈ Ai such thatUi(a
∗
i , a

0
−i, t1) > Ui(a

0, t1) andφ(a∗i , a
0
−i) > φ(a0). To see this

let P∗ be the extreme player set with the least number of players, i.e.,P∗ = Pu(a0)

if |Pu(a0)| ≤ |P l(a0)| or P∗ = P l(a0) if |Pu(a0)| > |P l(a0)|. Since the interaction

graph satisfies Assumption 6.5.23, for somet1 ∈ [t0, t0 + T ] there exists at least one

playerPi ∈ P∗ with a neighborPj ∈ Ni(t1) such thatPj /∈ P∗. Therefore,

|Si(a
0, t1)| > 1 ⇒ |Bi(a

0, t1)| 6= ∅.

Let a∗i ∈ Bi(a
0, t1) and for notional convenience leta1 = (a∗i , a

0
−i). We know that

D(a1,P) ≤ D(a0,P). If D(a1,P) < D(a0,P), then

φ(a1) = −D(a1,P) + δA(1− n(a1)/n),

> −D(a0,P) + δA + δA(1− n(a1)/n),

> −D(a0,P) + δA + δA(1− (n(a0) + n)/n),

= φ(a0).

3Note that assumption 6.5.2 is stronger than necessary for this proof.
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If D(a1,P) = D(a0,P), then

φ(a1) = −D(a0,P) + δA(1− n(a1)/n),

> −D(a0,P) + δA(1− (n(a1) + 1)/n),

≥ −D(a0,P) + δA(1− n(a0)/n),

= φ(a0).

Therefore,a0 is not a universal Nash equilibrium.

If all players adhere to the better reply with inertia dynamics in a consensus prob-

lem where the interaction graph satisfies Assumption 6.5.2 and the players are assigned

reasonable objective functions then the joint action profile will converge almost surely

to a consensus point.

These results can easily be extended to a multi-dimensional consensus problem

with bounded observational delays.

6.5.2 Extension to Multi-Dimensional Consensus

One can easily extend the arguments above to show that anyk-dimensional consensus

game is a sometimes weakly acyclic game by generalizing the measure and choosing

the extreme player sets appropriately. An example of an acceptable measure is

D(a,P ′) :=
n∑

k=1

max
Pi,Pj∈P ′

dT
k (ai − aj).

whereP ′ ⊆ P andd1, d2, ..., dn ∈ Rk is a set of measure vectors which span the com-

plete space ofRk. The termmaxPi,Pj∈P ′ dT
k (ai − aj) captures the maximum distance

between the action of any two agents in the nonempty player setP ′ relative to the mea-

sure directiondk. In the 1-D consensus problem, whered1 = 1, the measure reverts

back to (6.5).
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The set of reasonable actions for playerPi at timet given the joint action profilea

is now

Si(a, t) = {a′i ∈ Ai : ∀k, max
Pj∈Ni(t)

dT
k aj ≥ dT

k a
′
i ≥ min

Pj∈Ni(t)
dT

k aj}.

The consensus algorithm in (6.1) corresponds to a specific reasonable utility function.

In particular, the set of reasonable actions is the convex hull of the previous actions of

his neighbors, i.e.,

Si(a, t) = {a′i ∈ Ai : a′i =
∑

Pj∈Ni(t)

ωijaj,
∑

Pj∈Ni(t)

ωij = 1, ωij > 0 ∀ Pj ∈ Ni(t)}.

In the present setting, a player’s future action need not be in the convex hull of his

neighbors’ actions.

6.6 Group Based Decision Processes for Potential Games

In this section, we analyze the situation where players are allowed to collaborate with

a group of other players when making a decision. In particular we extend the results

of SAP to accommodate such a grouping structure.

6.6.1 Spatial Adaptive Play with Group Based Decisions

Consider a potential game with potential functionφ : A → R. We will now introduce

a variant of SAP to accommodate group based decisions. At each timet > 0, a group

of playersG ⊆ P is randomly chosen according to a fixed probability distribution

P ∈ ∆(2P) where2P denotes the set of subsets ofP. We will refer toPG as the

probability that groupG will be chosen. We make the following assumption on the

group probability distribution.

Assumption 6.6.1 (Completeness).For any playerPi ∈ P there exists a groupG ⊆

P such thatPi ∈ G andPG > 0.

135



Once a group is selected, the group is unilaterally allowed to alter it’s collective

strategy. All players not in the group must repeat their action, i.e.,a−G(t) = a−G(t−1),

whereaG is the action-tuple of all players in the groupG, anda−G is the action-tuple

of all players not in the groupG. The group will be modeled as a single entity with a

group utility functionUG : A → R and a collective action setAG =
∏
Pi∈GAi. At

time t, the updating groupG randomly selects a collective action fromAG according

to the collective strategypG(t) ∈ ∆(AG) where theaG−th componentpaG
G (t) of the

collective strategy is given as

paG
G (t) =

exp{β Ui(aG, a−G(t− 1))}∑
āG∈AG

exp{β Ui(āG, a−G(t− 1))}
,

for some exploration parameterβ ≥ 0.

We make the following assumption on the admissible group utility functions:

Assumption 6.6.2 (Group Utility Functions). Group utility functions must preserve

the potential structure of the game, meaning that for any groupG ⊆ P, collective

group actionsa′G, a
′′
G ∈ AG, anda−G ∈

∏
Pi /∈GAi,

UG(a′′G, a−G)− UG(a′G, a−G) = φ(a′′G, a−G)− φ(a′G, a−G).

.

In general, group utility functions need to preserve this condition. However, one

can always assign each group a utility that captures the group’s marginal contribution

to the potential function, i.e., a wonderful life utility as discussed in Section 6.3. This

utility assignment guarantees preservation of the potential structure of the game.

We will now show that the convergence properties of the learning algorithm SAP

still hold with group based decisions.

Theorem 6.6.1.Consider a finiten-player potential game with potential functionφ(·),

a group probability distributionP satisfying Assumption 6.6.1, and group utility func-
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tions satisfying Assumption 6.6.2. SAP with group based decisions induces a Markov

process over the state spaceA where the unique stationary distributionµ ∈ ∆(A) is

given as

µ(a) =
exp{β φ(a)}∑

ā∈A exp{β φ(ā)}
, for anya ∈ A. (6.7)

Proof. The proof follows along the lines of the proof of Theorem 6.2 in [You98]. By

Assumption 6.6.1, the Markov process induced by SAP with group based decisions

is irreducible and aperiodic; therefore, the process has a unique stationary distribu-

tion. Below, we show that this unique distribution must be (6.7) by verifying that the

distribution (6.7) satisfies the detailed balanced equations

µ(a)Pab = µ(b)Pba,

for anya, b ∈ A, where

Pab := Pr [a(t) = b|a(t− 1) = a] .

Note that there are now several ways to transition froma andb when incorporating

group based decisions. LetḠ(a, b) represent the group of players with different actions

in a andb, i.e.,

Ḡ(a, b) := {Pi ∈ P : ai 6= bi}.

LetG(a, b) ⊆ 2P be the complete set of player groups for which the transition froma

to b is possible, i.e.,

G(a, b) := {G ∈ 2P : Ḡ(a, b) ⊆ G}.

Since a groupG ∈ G(a, b) has probabilityPG of being chosen in any given period,

it follows that

µ(a)Pab =

[
exp{β φ(a)}∑

z∈A exp{β φ(z)}

]
×

[ ∑
G∈G(a,b)

PG
exp{β UG(b)}∑

āG∈AG
exp{β UG(āG, a−G)}

]
.

137



Letting

λG :=

(
1∑

z∈A exp{β φ(z)}

)
×

(
PG∑

āG∈AG
exp{β UG(āG, a−G)}

)
,

we obtain

µ(a)Pab =
∑

G∈G(a,b)

λG exp{βφ(a) + βUG(b)}.

SinceUG(b)− UG(a) = φ(b)− φ(a) andG(a, b) = G(b, a), we have

µ(a)Pab =
∑

G∈G(b,a)

λG exp{βφ(b) + βUG(a)},

which leads us to

µ(a)Pab = µ(b)Pba.

6.6.2 Restricted Spatial Adaptive Play with Group Based Decisions

Extending these results to accommodate restricted action sets is straightforward. Let

a(t − 1) be the action profile at timet − 1. In this case, the restricted action set for

any groupG ⊆ P at timet will be AG(t) =
∏
Pi∈GRi(ai(t − 1)). We will state the

following theorem without proof to avoid redundancy.

Theorem 6.6.2.Consider a finiten-player potential game with potential functionφ(·),

a group probability distributionP satisfying Assumption 6.6.1, and group utility func-

tions satisfying Assumption 6.6.2. If the restricted action sets satisfy Assumptions 6.3.1

and 6.3.2, then RSAP induces a Markov process over the state spaceA where the

unique stationary distributionµ ∈ ∆(A) is given as

µ(a) =
exp{β φ(a)}∑

ā∈A exp{β φ(ā)}
, for anya ∈ A.
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6.6.3 Constrained Action Sets

The learning algorithms SAP or RSAP with group based decisions induced a Markov

process over the entire setA. We will now consider the situation in which each group’s

action set is constrained, i.e.,AG ⊂
∏
Pi∈GAi. We will assume that the collective

action set of each group is time invariant.

Under this framework, the learning algorithms SAP or RSAP with group based

decisions induces a Markov process over the constrained setĀ ⊆ A which can be

characterized as follows: Leta(0) be the initial actions of all players. If̄a ∈ Ā then

there exists a sequence of action profilesa(0) = a0, a1, ..., an = ā with the condition

that for allk ∈ {1, 2, ..., n}, ak = (ak
Gk
, ak−1
−Gk

) for a groupGk ⊆ P, wherePGk
> 0

andak
Gk
∈ AGk

. The unique stationary distributionµ ∈ ∆(Ā) is given as

µ(a) =
exp{β φ(a)}∑

ā∈Ā exp{β φ(ā)}
, for anya ∈ Ā. (6.8)

6.7 Functional Consensus

In the consensus problem, as described in Section 6.3, the global objective was for all

agents to reach consensus. In this section, we will analyze the functional consensus

problem where the goal is for all players to reach a specific consensus point which is

typically dependent on the initial action of all players, i.e.,

lim
t→∞

ai(t) = f(a(0)), ∀Pi ∈ P ,

wherea(0) ∈ A is the initial action of all players andf : A → R is the desired

function. An example of such a function for ann-player consensus problem is

f(a(0)) =
1

n

∑
Pi∈P

ai(0),

for which the goal would be for all players to agree upon the average of the initial

actions of all players. We will refer to this specific functional consensus problem as
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average consensus.

The consensus algorithm of (6.1) achieves the objective of average consensus un-

der the condition that the interaction graph is connected and the associated weighting

matrix, Ω = {ωij}Pi,Pj∈P , is doubly stochastic. A doubly stochastic matrix is any

matrix where all coefficients are nonnegative and all column sums and rows sums are

equal to 1. The consensus algorithm takes on the following matrix form

a(t+ 1) = Ω a(t).

If Ω is a doubly stochastic matrix, then for any timet > 0,

1Ta(t+ 1) = 1T Ω a(t) = 1Ta(t).

Therefore, the sum of the actions of all players is invariant. Hence, if the players

achieve consensus, they must agree upon the average.

In order to achieve any form of functional consensus it is imperative that there exist

cooperation amongst the players. Players must agree on how to alter their action each

iteration. In the consensus algorithm, this cooperation is induced by the weighting ma-

trix which specifies precisely how a player should change his action each iteration. If

a player acted selfishly and unilaterally altered his action, the invariance of the desired

function would not be preserved.

6.7.1 Setup: Functional Consensus Problem with Group Based Decisions

Consider the consensus problem with a time invariant undirected interaction graph as

described in Section 6.3. To apply the learning algorithm SAP or RSAP with group

based decisions to the functional consensus problem one needs to define both the group

utility functions and the group selection process.
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6.7.2 Group Utility Function

Recall the potential function used for the consensus problem with a time invariant and

undirected interaction graph analyzed in Section 6.3,

φ(a) = −(1/2)
∑
Pi∈P

∑
Pj∈Ni

‖ai − aj‖.

We will assign any groupG ⊆ P the following local group utility function

UG(a) = −(1/2)
∑
Pi∈G

∑
Pj∈Ni∩G

‖ai − aj‖ −
∑
Pi∈G

∑
Pj∈Ni\G

‖ai − aj‖. (6.9)

An explanation for the(1/2) is to avoid double counting since the interaction graph

is undirected. We will now show that this group utility function satisfies Assump-

tion 6.6.2. Before showing this, letNG denote the neighbors of groupG, i.e.,NG =⋃
Pi∈G Ni. The change in the potential function by switching froma = (aG, a−G) to

a′ = (a′G, a−G) is

φ(a′)− φ(a) = −(1/2)
∑
Pi∈P

∑
Pj∈Ni

(
‖a′i − a′j‖ − ‖ai − aj‖

)
.

For simplicity of notation letδij = −(1/2)(‖a′i − a′j‖− ‖ai − aj‖). The change in the

potential can be expressed as

φ(a′)− φ(a) =
∑
Pi∈P

∑
Pj∈Ni

δij,

=
∑
Pi∈NG

∑
Pj∈Ni

δij,

=
∑
Pi∈G

∑
Pj∈Ni∩G

δij +
∑
Pi∈G

∑
Pj∈Ni\G

δij +
∑

Pi∈NG\G

∑
Pj∈Ni

δij,

=
∑
Pi∈G

∑
Pj∈Ni∩G

δij +
∑
Pi∈G

∑
Pj∈Ni\G

δij +
∑

Pi∈NG\G

∑
Pj∈Ni∩G

δij.

Since the interaction graph is undirected, we know that∑
Pi∈G

∑
Pj∈Ni\G

δij =
∑

Pi∈NG\G

∑
Pj∈Ni∩G

δij,
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therefore, we can conclude that

φ(a′)− φ(a) =
∑
Pi∈G

( ∑
Pj∈Ni∩G

δij + 2
∑

Pj∈Ni\G

δij
)

= UG(a′)− UG(a).

6.7.3 Group Selection Process and Action Constraints

Let a(t − 1) be the action profile at timet − 1. At time t, one playerPi is randomly

(uniformly) chosen. Rather that updating his action unilaterally, playerPi first selects

a group of playersG ⊆ P which we will assume is the neighbors of playerPi, i.e.,

G = Ni. The group is assigned a group utility function as in (6.9) and a constrained

action setAG ⊂
∏
Pi∈GAi.

A central question is how can one constrain the group action set, using only loca-

tion information, such as to preserve the invariance of the desired functionf . In this

case, we will restrict our attention only to functions where “local” preservation equates

to “global” preservation. This means that for each groupG ⊆ P there exists a function

fG : AG → R such that for any group actionsa′G, a
′′
G ∈ AG

fG(a′G) = fG(a′′G) ⇒ f(a′G, a−G) = f(a′′G, a−G), ∀a−G ∈
∏
Pi /∈G

Ai.

Examples of functions that satisfy this constraint are

fG(a) =
1

|G|
∑
Pi∈G

ai ⇒ f(a) =
1

|P|
∑
Pi∈P

ai,

fG(a) = max
Pi∈G

ai ⇒ f(a) = max
Pi∈P

ai,

fG(a) = min
Pi∈G

ai ⇒ f(a) = min
Pi∈P

ai.

In each of these examples, the structural form off andfG is equivalent. There may

exist alternative functions where this is not required.
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6.7.4 Illustration

We will illustrate this approach by solving the average consensus problem on the ex-

ample developed in Section 6.3.4. Given the initial configuration, all players should

agree upon the action(5, 5). We will solve this average consensus problem using the

learning algorithm binary RSAP with group based decisions. However, we will omit

the non-convex obstruction in this illustration. This omission is not necessary, but

rather convenient for not having to verify the properties of the constrained action set,

i.e., is consensus even possible, and Assumption 6.3.2 for the group action sets.

Figure 6.3 illustrates the evolution of each player’s actions using the stochastic

learning algorithm binary RSAP with group based decisions and an increasingβ coef-

ficient,β(t) = 1.5 + t(2/1000).

6.8 Illustrative Examples

In this section we will develop two examples to further illustrate the wide range appli-

cability of the theory developed in this chapter. The first problem we will consider is

the dynamic sensor allocation problem. Lastly, we will demonstrate how this theory

can be used to solve a popular mathematical puzzle called Sudoku.

6.8.1 Dynamic Sensor Coverage Problem

We consider the dynamic sensor coverage problem described in [LC05c] and refer-

ences therein. The goal of the sensor coverage problem is to allocate a fixed number

of sensors across a given “mission space” to maximize the probability of detecting a

particular event.

We will divide the mission space into a finite set of sectors denoted asS. There
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Figure 6.3: Evolution of Each Player’s Action in the Average Consensus Problem

exists an events density function, or relative reward function,R(s), defined overS. We

will assume thatR(s) ≥ 0,∀s ∈ S and
∑

s∈S R(s) = 1. In the application of enemy

submarine tracking,R(s) could be defined as the a priori probability that an enemy

submarine is situated in sectors. The mission space and associated reward function

that we will use in this section is illustrated in Figure 6.4.

There are a finite number of autonomous sensors denoted asP = {P1, ...,Pn}

allocated to the mission space. Each sensorPi can position itself in any particular
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sector, i.e., the action set of sensorPi isAi = S. Furthermore, each sensor has limited

sensing and moving capabilities. If an event occurs in sectors, the probability of sensor

Pi detecting the event given his current locationai is denoted aspi(s, ai). Typically,

each sensor has a finite sensing radius,ri, where the probability of detection obeys the

following:

‖s− ai‖ < ri ⇔ pi(s, ai) > 0.

An example of the sensing and moving capabilities of a particular sensor is illustrated

in Figure 6.5.

For a given joint action profilea = {a1, ..., an}, the joint probability of detecting

an event in sectors is given by

P (s, a) = 1−
∏
Pi∈P

[1− pi(s, ai)].

In general a global planner would like the sensors to allocate themselves in such a

fashion as to maximize the following potential function

φ(a) =
∑
s∈S

R(s)P (s, a).
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One way to accomplish such an objective is to assign each sensor a utility function

that is appropriately aligned with the global objective function as was the case in the

consensus problem. One option is to just assign each sensor the global objective, i.e.,

Ui(a) = φ(a).

Under this scenario, we have a potential game and one could use a learning algorithm

like SAP or RSAP to guarantee that the sensors allocate themselves in a configuration

that maximizes the global objective. However, this particular choice of utility functions

require each sensor to be knowledgable of the locations and capabilities of all other

sensors. To avoid this requirement, we will assign each sensor a Wonderful Life Utility

[AMS07, WT99]. The utility of sensorPi given any action profilea ∈ A is now

Ui(a) = φ(ai, a−i)− φ(a0
i , a−i), (6.10)

where the actiona0
i is defined as thenull action, which is equivalent to sensorPi

turning off all sensing capabilities. The termφ(a0
i , a−i) captures the value of the al-

location of all sensors other than sensorPi. Therefore, the utility of sensorPi for an
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action profilea is defined as hismarginal contribution to the global objective. This

means that a sensor now can evaluate his utility using only local information. Further-

more, the Wonderful Life Utility assignment preserves the potential game structure

[AMS07, WT99], meaning that SAP or RSAP can now be implemented with the sen-

sors using only local information to guarantee that the sensors allocate themselves in

a desirable configuration.

In the following simulation we have the mission space and reward function as illus-

trated in Figure 6.4. The mission space isS = {1, 2, ..., 100} × {1, 2, ..., 100} and the

reward function satisfies
∑

s∈S R(s) = 1. We have 18 different autonomous sensors, 6

with a sensing radius of 6, 6 with a sensing radius of 12, and 6 with a sensing radius of

18. For simplicity, each sensor will have prefect sensing capabilities within its sensing

radius, namely for any sectors satisfying‖s− ai‖ < ri, thenpi(s, ai) = 1. Each sen-

sor is endowed with the WLU as expressed in (6.10). All 18 sensors originally started

at the location(1, 1) and each sensor has range restricted action sets as illustrated in

Figure 6.5. We ran the binary RSAP withβ = 0.6. Figure 6.6 illustrates a snapshot

of the sensors configuration at the final iteration. Figure 6.7 illustrates the evolution of

the potential function over the mission.

6.8.2 Sudoku

Our final illustration of the broad applicability of potential games is the well known

mathematical puzzle of Sudoku. An example of a Sudoku puzzle is shown in Fig-

ure 6.8. The objective is to fill a 9x9 grid so that each column, each row, and each

of the nine 3x3 boxes contains the digits from 1 to 9. The puzzle setter provides a

partially completed grid (blue boxes) which cannot be changed.

We will now illustrate that Sudoku is exactly a potential game when the players,

action sets, and utility functions are designed appropriately. We will view each of the
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empty boxes as a self interested playerPi with action setAi = {1, 2, ..., 9}. Each

player will be assigned the utility function

Ui(a) :=
∑

Pj∈NR
i

I{ai = aj}+
∑

Pj∈NC
i

I{ai = aj}+
∑

Pj∈NB
i

I{ai = aj},

whereNR
i , N

C
i , andNB

i are the row, column and box neighbors of playerPi andI{·}

is the usual indication function. An illustration of the neighbor sets of playerP1 is

highlighted in Figure 6.9, where the the green boxes indicate the row neighbors, red

boxes indicate the column neighbors, and yellow boxes indicate the box neighbors.

Note that in this framework, unlike with the consensus problem, each playerPi is not

a neighbor of himself.

To simplify the notation, we define the following function: for each playerPi and

for any player set̄P ⊆ P, let

ni(a, P̄) :=
∑
Pj∈P̄

I{ai = aj}.

This function computes the number of players with the same action as playerPi in the
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setP̄. Using this function, we will express the utility of playerPi as

Ui(a) = ni(a,N
R
i ) + ni(a,N

C
i ) + ni(a,N

B
i ).

We will now show that the Sudoku game with utilities defined as above is a poten-

tial game with potential function

φ(a) = 1/2
∑
Pi∈P

Ui(a).

To simplify the analysis, we will break up the potential function as

φ(a) = φR(a) + φC(a) + φB(a),

where

φR(a) = 1/2
∑
Pi∈P

ni(a,N
R
i ),

φC(a) = 1/2
∑
Pi∈P

ni(a,N
C
i ),

φB(a) = 1/2
∑
Pi∈P

ni(a,N
B
i ).
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Let a′, a′′ ∈ Y be any two action profiles that differ by a unilateral deviation, i.e.,

a′i 6= a′′i anda′−i = a′′−i for some playerPi ∈ P. The change inφR(·) is

2(φR(a′)− φR(a′′)) =
∑
Pi∈P

ni(a
′, NR

i )− ni(a
′′, NR

i ),

= ni(a
′, NR

i )− ni(a
′′, NR

i ) +
∑

Pj∈NR
i

nj(a
′, NR

j )− nj(a
′′, NR

j ),

= ni(a
′, NR

i )− ni(a
′′, NR

i ) +
∑

Pj∈NR
i

nj(a
′,Pi)− nj(a

′′,Pi),

= ni(a
′, NR

i )− ni(a
′′, NR

i ) +
∑

Pj∈NR
i

ni(a
′,Pj)− ni(a

′′,Pj),

= ni(a
′, NR

i )− ni(a
′′, NR

i ) + ni(a
′, NR

i )− ni(a
′′, NR

i ),

= 2(ni(a
′, NR

i )− ni(a
′′, NR

i )).

One could repeat this analysis forφC(·) andφB(·) to show that

φ(a′)− φ(a′′) = Ui(a
′)− Ui(a

′′).

Therefore the Sudoku game is in fact a potential game. Furthermore, the potential

function is always nonnegative, and achieves the value of 0 if and only if the Sudoku

puzzle has been solved. Therefore, all solutions to the Sudoku puzzles are in fact Nash

equilibria of the Sudoku game. However, much like the consensus problem, there may

exist suboptimal Nash equilibria.

To solve the Sudoku puzzle we will use the learning algorithm SAP as described in

Section 6.3.2. We let theβ coefficient increase asβ(t) = t/5000. Figure 6.10 shows

the evolution of the potential function during the SAP learning process. One can see

that the potential function achieves the value of 0 after approximately 17,000 iterations

which means that the puzzle has been solved. To verify, the final joint action profile is

illustrated in Figure 6.11.

To further illustrate the applicability of SAP, we simulated SAP on a Sudoku puzzle
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classified asvery hard. Once again, a solution to the puzzle was found as illustrated in

Figure 6.12.
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Figure 6.12: Spatial Adaptive Play on a Sudoku Puzzle Classified as Very Hard

It is important to note that while it took many iterations to solve the Sudoku puz-

zles, the algorithm of SAP was applied in its original form. We firmly believe that the

algorithm could be modified to decrease computation time. For example, a player’s

action set could be reduced with knowledge of the board. In particular, the action set

of playerP1 in Figure 6.9 could initially have been set asA1 = {1, 2, 3, 6, 7, 8, 9}.

6.9 Concluding Remarks

We have proposed a game theoretic approach to cooperative control by highlighting a

connection between cooperative control problems and potential games. We introduced

a new class of games and enhanced existing learning algorithms to broaden the ap-

plicability of game theoretic methods in cooperative control setting. We demonstrated

that one could successfully implement game theoretic methods on the cooperative con-

trol problem of consensus in a variety of settings. While the main example used was

the consensus problem, the results in Theorems 6.3.1, 6.4.1, and 6.6.1 and the notion

of a sometimes weakly acyclic game is applicable to a broader class of games as well
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as other cooperative control problems.
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CHAPTER 7

Conclusions

This dissertation focused on dealing with the distributed nature of decision making and

information processing through a non-cooperative game-theoretic formulation. The

emphasis was on simple learning algorithms that guarantee convergence to a Nash

equilibrium.

We analyzed the long-term behavior of a large number of players in large-scale

games where players are limited in both their observational and computational capa-

bilities. In particular, we analyzed a version of JSFP and showed that it accommodates

inherent player limitations in information gathering and processing. Furthermore, we

showed that JSFP has guaranteed convergence to a pure Nash equilibrium in all gen-

eralized ordinal potential games, which includes but is not limited to all congestion

games, when players use some inertia either with or without exponential discounting

of the historical data. Furthermore, we introduced a modification of the traditional

no-regret algorithms that (i) exponentially discounts the memory and (ii) brings in a

notion of inertia in players’ decision process. We showed how these modifications can

lead to an entire class of regret based algorithms that provide convergence to a pure

Nash equilibrium in any weakly acyclic game.

The method of proof used for JSFP and the regret based dynamics relies on in-

ertia to derive a positive probability of a single player seeking to make an utility im-

provement, thereby increasing the potential function. This suggests a convergence rate

that is exponential in the game size, i.e., number of players and actions. It should be

155



noted that inertia is simply a proof device that assures convergence for generic poten-

tial games. The proof provides just one out of multiple paths to convergence. The

simulations reflect that convergence can be much faster. Indeed, simulations suggest

that convergence is possible even in the absence of inertia. Furthermore, recent work

[HM06] suggests that convergence rates of a broad class of distributed learning pro-

cesses can be exponential in the game size as well, and so this seems to be a limitation

in the framework of distributed learning rather than any specific learning process (as

opposed to centralized algorithms for computing an equilibrium).

We also analyzed the long-term behavior of a large number of players in large-scale

games where players only have access to the action they played and the utility they

received. Our motivation for this information restriction is that in many engineered

systems, the functional forms of utility functions are not available, and so players must

adjust their strategies through an adaptive process using only payoff measurements. In

the dynamic processes defined here, there is no explicit cooperation or communication

between players. One the one hand, this lack of explicit coordination offers an ele-

ment of robustness to a variety of uncertainties in the strategy adjustment processes.

Nonetheless, an interesting future direction would be to investigate to what degree

explicit coordination through limited communications could be beneficial.

In this payoff based setting, players are no longer capable of analyzing the util-

ity they would have received for alternative action choices as required in the regret

based algorithms and JSFP. We introduced Safe Experimentation dynamics for identi-

cal interest games, Simple Experimentation dynamics for weakly acyclic games with

noise-free utility measurements, and Sample Experimentation dynamics for weakly

acyclic games with noisy utility measurements. For all three settings, we have shown

that for sufficiently large times, the joint action taken by players will constitute a Nash

equilibrium. Furthermore, we have shown how to guarantee that a collective objective
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in a congestion game is a (non-unique) Nash equilibrium.

Lastly, we proposed a game theoretic approach to cooperative control by high-

lighting a connection between cooperative control problems and potential games. We

introduced a new class of games and enhanced existing learning algorithms to broaden

the applicability of game theoretic methods in the cooperative control setting. We

demonstrated that one could successfully implement game theoretic methods on sev-

eral cooperative control problems including consensus, dynamic sensor allocation, and

distributing routing over a network. Furthermore, we even demonstrated how the

mathematical puzzle of Sudoku can be modeled as a potential game and solved in

a distributed fashion using the learning algorithms discussed in this dissertation.

In summary, this dissertation illustrated a connection between the fields of learning

in games and cooperative control and developed several suitable learning algorithms

for a wide variety of cooperative control problems. There remains several interesting

and challenging directions for future research.

Equilibrium Selection and Utility Design:

One problem regarding a game theoretic formulation of a multi-agent system is the

existence of multiple Nash equilibria, not all of which are desirable operating condi-

tions. Is it possible to develop a methodology for designing agent utilities/objectives

and to derive implementable learning algorithms that guarantee the agents’ collective

behavior converges to a desirable Nash equilibrium? For example, the potential game

formulation of the consensus problem had suboptimal Nash equilibria, i.e., Nash equi-

libria that did not represent consensus points. The existence of these suboptimal Nash

equilibria required the use of a stochastic learning algorithm such as SAP or RSAP

to guarantee reaching a desirable Nash equilibrium. However, when we modeled the

consensus problem as a sometimes weakly acyclic game and properly designed the

utilities we were able to effectively eliminate these suboptimal Nash equilibria. Can
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this be accomplished for more general cooperative control problems?

Learning Algorithms for Stochastic Games:

In many cooperative control problems players are inherently faced with a notion of

state dependent action sets and objectives. Stochastic games, which generalize Markov

decision processes to multiple decision makers, emerge as the most natural framework

to study such cooperative systems. An important research direction is understand to

applicability of Markov games for cooperative control problems and to develop simple

computational learning algorithms for stochastic games with guaranteed convergence

results. We believe that the notion of sometimes weakly acyclic game is an initial step

in the direction or Markov games.

Learning Algorithms with Time Guarantees:

One open issue with regarding the applicability of the learning algorithms dis-

cussed in this paper is time complexity. Roughly speaking, how long will it take the

agents to reach some form of a desirable operating condition? One question that has

relevance is whether non-stochastic learning algorithms, such as JSFP and regret based

algorithms, have computational advantage over stochastic learning algorithms, such as

SAP or RSAP. If the answer to this question is an affirmative, than the notion of utility

design plays an even more important role in the applicability of these learning algo-

rithms for controlling multi-agent systems.

158



REFERENCES

[AMS07] G. Arslan, J. R. Marden, and J. S. Shamma. “Autonomous Vehicle-Target
Assignment: A Game Theoretical Formulation.”ASME Journal of Dy-
namic Systems, Measurement and Control, 2007. to appear.

[AS04] G. Arslan and J. S. Shamma. “Distributed convergence to Nash equilibria
with local utility measurements.” In43rd IEEE Conference on Decision
and Control, pp. 1538–1543, 2004.

[BEL06] A. Blum, E. Evan-Dar, and K. Ligett. “On Convergence to Nash Equilibria
of Regret-Minimizing Algorithms in Routing Games.” InSymposium on
Principles of Distributed Computing (PODC), 2006.

[BHO05] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis. “Con-
vergence in multiagent coordination, consensus, and flocking.” InIEEE
Conference on Decision and Control, 2005.

[BK03] V. S. Borkar and P. R. Kumar. “Dynamic Cesaro-Wardrop equilibration
in networks.” IEEE Transactions on Automatic Control, 48(3):382–396,
2003.

[BL85] M. Ben-Akiva and S. Lerman.Discrete-Choice Analysis: Theory and
Application to Travel Demand. MIT Press, Cambridge, MA, 1985.

[Bow04] M. Bowling. “Convergence and No-Regret in Multiagent Learning.” In
Neural Information Processing Systems Conference (NIPS), 2004.

[BP05] B. Banerjee and J. Peng. “Efficient No-regret Multiagent Learning.” In
The 20th National Conference on Artificial Intelligence (AAAI-05), 2005.

[BPK91] M. Ben-Akiva, A. de Palma, and I. Kaysi. “Dynamic network models and
driver information systems.”Transportation Research A, 25A:251–266,
1991.

[Bra68] D. Braess. “Uber ein Paradoxen der Verkehrsplanning.”Un-
ternehmensforschung, 12:258–268, 1968.

[BT96] D. P. Bertsekas and J. N. Tsitsiklis.Neuro-Dynamic Programming.
Athena Scientific, Belmont, MA, 1996.

[FK93] D. Fudenberg and D. Kreps. “Learning mixed equilibria.”Games and
Economic Behavior, 5:320–367, 1993.

159



[FL98] D. Fudenberg and D. K. Levine.The Theory of Learning in Games. MIT
Press, Cambridge, MA, 1998.

[FRV06] S. Fischer, H. Raecke, and B. Voecking. “Fast convergence to Wardrop
equilibria by adaptive sampling methods.” InProceedings of the 38th An-
nual ACM Symposium on Theory of Computing, pp. 653–662, 2006.

[FT91] D. Fudenberg and J. Tirole.Game Theory. MIT Press, Cambridge, MA,
1991.

[FV04] S. Fischer and B. Vocking. “The evolution of selfish routing.” InPro-
ceedings of the 12th European Symposium on Algorithms (ESA ’04), pp.
323–334, 2004.

[FV05] S. Fischer and B. Voecking. “Adaptive routing with stale information.”
In Proceedings of the 24th Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 276–283, 2005.

[FY06] D. P. Foster and H. P. Young. “Regret testing: Learning to play Nash equi-
librium without knowing you have an opponent.”Theoretical Economics,
1:341–367, 2006.

[Ger94] S. B. Gershwin. Manufacturing Systems Engineering. Prentice-Hall,
1994.

[GJ03] A. Greenwald and A. Jafari. “A General Class of No-Regret Learning
Algorithms and Game-Theoretic Equilibria.” InConference on Learning
Theory (COLT), pp. 2–12, 2003.

[GL] F. Germano and G. Lugosi. “Global convergence of Foster and Young’s
regret testing.”Games and Economic Behavior. forthcoming.

[Gor05] G. J. Gordon. “No-regret algorithms for structured prediction problems.”
Technical Report CMU-CALD-05-112, Department of Machine Learning
at Carnegie Mellon, 2005.

[GSM05] A. Ganguli, S. Susca, S. Martinez, F. Bullo, and J. Cortes. “On collective
motion in sensor networks: sample problems and distributed algorithms.”
In Proceedings of the 44th IEEE Conference on Decision and Control, pp.
4239–4244, Seville, Spain, December 2005.

[Har05] S. Hart. “Adaptive Heuristics.”Econometrica, 73(5):1401–1430, 2005.

[HM00] S. Hart and A. Mas-Colell. “A simple adaptive procedure leading to cor-
related equilibrium.”Econometrica, 68:1127–1150, 2000.

160



[HM01] S. Hart and A. Mas-Colell. “A general class of adaptative strategies.”
Journal of Economic Theory, 98:26–54, 2001.

[HM03a] S. Hart and A. Mas-Colell. “Regret based continuous-time dynamics.”
Games and Economic Behavior, 45:375–394, 2003.

[HM03b] S. Hart and A. Mas-Colell. “Uncoupled dynamics do not lead to Nash
equilibrium.” American Economic Review, 93(5):1830–1836, 2003.

[HM06] S. Hart and Y. Mansour. “The communication complexity of uncoupled
nash equilibrium procedures.” Technical Report DP-419, The Hebrew
University of Jerusalem, Center for Rationality, April 2006.

[HS98] J. Hofbauer and K. Sigmund.Evolutionary Games and Population Dy-
namics. Cambridge University Press, Cambridge, UK, 1998.

[HS04] S. Huck and R. Sarin. “Players with limited memory.”Contributions to
Theoretical Economics, 4(1), 2004.

[JGD01] A. Jafari, A. Greenwald, D., and G. Ercal. “On No-Regret Learning, Fic-
titious Play, and Nash Equilibrium.” InProceedings of the Eighteenth In-
ternational Conference on Machine Learning (ICML), pp. 226–233, 2001.

[JLM03] A. Jadbabaie, J. Lin, and A. S. Morse. “Coordination of groups of mobile
autonomous agents using nearest neighbor rules.”IEEE Transaction on
Automatic Control, 48(6):988–1001, June 2003.

[KBS06] A. Kashyap, T. Basar, and R. Srikant. “Consensus with Quantized Infor-
mation Updates.” In45th IEEE Conference on Decision and Control, pp.
2728–2733, 2006.

[KV05] A. Kalai and S. Vempala. “Efficient algorithms for online decision prob-
lems.” Journal of Computer and System Sciences, 71(3):291–307, 2005.

[LC03] D. Leslie and E. Collins. “Convergent multiple-timescales reinforcement
learning algorithms in normal form games.”Annals of Applied Probabil-
ity, 13:1231–1251, 2003.

[LC05a] D. Leslie and E. Collins. “Generalised weakened fictitious play.”Games
and Economic Behavior, 56:285–298, 2005.

[LC05b] D. Leslie and E. Collins. “IndividualQ-learning in normal form games.”
SIAM Journal on Control and Optimization, 44(2), 2005.

[LC05c] W. Li and C. G. Cassandras. “Sensor Networks and Cooperative Control.”
European Journal of Control, 2005. to appear.

161



[LES05] T. Lambert, M. Epelman, and R. Smith. “A Fictitious Play Approach to
Large-Scale Optimization.”Operations Research, 53(3):477–489, 2005.

[MAS05] J. R. Marden, G. Arslan, and J. S. Shamma. “Joint Strategy Fictitious
Play with Inertia for Potential Games.” InProceedings of the 44th IEEE
Conference on Decision and Control, pp. 6692–6697, December 2005.
Submitted toIEEE Transactions on Automatic Control.

[MAS07a] J. R. Marden, G. Arslan, and J. S. Shamma. “Connections Between Co-
operative Control and Potential Games Illustrated on the Consensus Prob-
lem.” In Proceedings of the 2007 European Control Conference (ECC
’07), July 2007. to appear.

[MAS07b] J. R. Marden, G. Arslan, and J. S. Shamma. “Regret Based Dynamics:
Convergence in Weakly Acyclic Games.” InProceedings of the 2007 In-
ternational Conference on Autonomous Agents and Multiagent Systems
(AAMAS), Honolulu, Hawaii, May 2007.

[Mil04] I. Milchtaich. “Social optimality and cooperation in nonatomic congestion
games.”Journal of Economic Theory, 114(1):56–87, 2004.

[Mor04] L. Moreau. “Stability of Continuous-Time Distributed Consensus Algo-
rithms.” In 43rd IEEE Conference on Decision and Control, pp. 3998–
4003, 2004.

[MS96a] D. Monderer and L. S. Shapley. “Fictitious play property for games with
identical interests.”Journal of Economic Theory, 68:258–265, 1996.

[MS96b] D. Monderer and L. S. Shapley. “Potential Games.”Games and Economic
Behavior, 14:124–143, 1996.

[MS97] D. Monderer and A. Sela. “Fictitious play and no-cycling conditions.”
Technical report, 1997.

[MS07] S. Mannor and J.S. Shamma. “Multi-agent Learning for Engineers.” 2007.
forthcoming special issue inArtificial Intelligence.

[MYA07] J. R. Marden, H. P. Young, G. Arslan, and J. S. Shamma. “Payoff Based
Dynamics for Multi-Player Weakly Acyclic Games.”SIAM Journal of
Control and Optimization, 2007. submitted to.

[OFM07] R. Olfati-Saber, J. A. Fax, and R. M. Murray. “Consensus and Cooperation
in Networked Multi-Agent Systems.” InProceedings of the IEEE, January
2007. to appear.

162



[OM03] R. Olfati-Saber and R. M. Murray. “Consensus Problems in Networks of
Agents with Switching Topology and Time-Delays.”IEEE Transaction on
Automatic Control, 49(6), June 2003.

[Ros73] R. W. Rosenthal. “A Class of Games Possessing Pure-Strategy Nash Equi-
libria.” Int. J. Game Theory, 2:65–67, 1973.

[Rou03] Tim Roughgarden. “The price of anarchy is independent of the network
topology.” Journal of Computer and System Sciences, 67(2):341–364,
2003.

[SA05] J. S. Shamma and G. Arslan. “Dynamic fictitious play, dynamic gradient
play, and distributed convergence to Nash equilibria.”IEEE Transactions
on Automatic Control, 50(3):312–327, 2005.

[Sam97] L. Samuelson.Evolutionary Games and Equilibrium Selection. MIT
Press, Cambridge, MA, 1997.

[San02] W. Sandholm. “Evolutionary Implementation and Congestion Pricing.”
Review of Economic Studies, 69(3):667–689, 2002.

[SB98] R. S. Sutton and A. G. Barto.Reinforcement Learning: An Introduction.
MIT Press, MA, 1998.

[SPG07] Y. Shoham, R. Powers, and T. Grenager. “If multi-agent learning is the
answer, what is the question?” forthcoming special issue inArtificial
Intelligence, 2007.

[TBA86] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. “Distributed Asyn-
chronous Deterministic and Stochastic Gradient Optimization Algo-
rithms.” IEEE Transactions on Automatic Control, 35(9):803–812, 1986.

[War52] J. G. Wardrop. “Some theoretical aspects of road traffic research.” In
Proceedings of the Institute of Civil Engineers, volume I, pt. II, pp. 325–
378, London, Dec. 1952.

[Wei95] J.W. Weibull. Evolutionary Game Theory. MIT Press, Cambridge, MA,
1995.

[WT99] D. Wolpert and K. Tumor. “An overview of collective intelligence.” In
J. M. Bradshaw, editor,Handbook of Agent Technology. AAAI Press/MIT
Press, 1999.

[XB04] L. Xiao and S. Boyd. “Fast linear iterations for distributed averaging.”
Systems and Control Letters, 2004.

163



[XB05] L. Xiao and S. Boyd. “A scheme for robust distributed sensor fusion based
on average consensus.” InInformation processing in sensor networks,
2005.

[You93] H. P. Young. “The Evolution of Conventions.”Econometrica, 61(1):57–
84, January 1993.

[You98] H. P. Young.Individual Strategy and Social Structure. Princeton Univer-
sity Press, Princeton, NJ, 1998.

[You05] H. P. Young.Strategic Learning and its Limits. Oxford University Press,
2005.

164


